Site: WWW.EINYDULSEFONG.COM ¥ % A Ak Ak A A K A K A A KA KA R A KA KA

Authors: skrol29@freesurf.fr, Pirjo H
Date: 2005-01-14 TlnyBUtStrong

version 2.01

Template Engine for Pro and Beginners
for PHP version 4.0.6 or higher

Table of Contents:
Subject Description

e Introduction

Basic principles
Installation

Mini examples
e PHP side
e To begin
method LoadTemplate() load the contents of a template from a file
method MergeBlock() merge a part of the template with a data source
method Show() automatic processing and display of the result
e Advanced
method CacheAction() activate the Cache System for merge results
method GetBlockSource() returns the source of the definition of a block
method MergeField() merge a specific field with a value
method MergeNavigationBar() merge a navigation bar
method MergeSpecial() merge automatic fields, PHP variables, and others...
property Render to alter the merge ending option
property Source returns the current contents of the result
property TplVars returns template variables
Adding a data source type to make TBS recognize a new database type
e HTML side
e TBS fields
Definition and syntax
Parameters
Var fields
Special Var fields
e TBS blocks
Definition and syntaxes
Parameters
Sections of block
Serial display (in columns)
Dynamic queries / sub-blocks
Display a navigation bar
¢ Miscellaneous
Automatic fields and blocks
Include a sub-template
Include the result of another PHP script
Conditional display overview
® Summary
TBS Field's parameters
TBS Block's parameters
Fields and parameters for Navigation bar
Names of Special Fields and Blocks

http://www.tinybutstrong.com

Introduction:

TinyButStrong (TBS) is a PHP class useful to develop an application in a clean way, separating PHP scripts and
HTML files. With TBS, HTML pages are generated dynamically by merging a template with data. It is called a
Template Engine.

The name TBS comes from the fact that this tool contains only 8 functions and yet, it is very powerful. It allows
you to merge HTML page templates with your PHP variables or your MySQL, PostgreSQL, or SQLite.

TBS has been engineered so that you can develop your HTML page templates with ease using any visual HTML
editors (like Dreamweaver or FrontPage). But if you are used to designing your HTML pages with a text editor, it
is nice as well. TBS also enables you to create JavaScript dynamically.

As the name of it tells, TBS is easy to use, strong and fast. It is completely °~° freeware °~°,

Basic principles:

On the HTML side:

You design a page which does not necessarily contain any PHP scripts, nor any programming. In this page you
place TBS tags in the places where you want to display the dynamic data. This page is called a 'template’.

There are two types of tags: the 'fields' which are used to display dynamic data items, and the 'blocks' which are
used to define an area, mostly in order to display records from a data source.

On the PHP side:
You use an object TBS variable to manage the merge of your HTML Template with the data. At the end, TBS
shows the result of the merge.

Installation:

1. Copy the file tbs_class.php in a directory of your Web site.
2. At the beginning of your PHP program, add the lines:
include_once ('tbs_class.php');
STBS = new clsTinyButStrong ;

Remark: if the TBS file tbs_class.php is in a different directory than your application, then you have to precise the directory in front
of the TBS file name.

Explanations and technical details:

TinyButStrong is a library written in PHP, it's a component to be referenced in your own PHP programs. In
technical terms, TinyButStrong is a PHP 'class' ; the name of this class is clsTinyButStrong.

The variable $TBS that you add at the beginning of your PHP program enables you to execute the merge of your
template from your PHP application. In technical terms, the variable $TBS is an 'instance' of the clsTinyButStrong
class.

Mini examples:

Example 1:
Html Template Php Program Result
<html> <? <html>
<body> . <body>
[varJnessage] include_once ('tbs_class.php'); Hello
STBS = new clsTinyButStrong ;
</body> B ; , </body>
</htnﬂ> ?TBS >LoadTemplate ('template.htm') </htnﬂ>
Smessage = 'Hello' ;
STBS—>Show () ;
?>
Example 2:
Html Template Php Program Result
<table> <? <table>
<tr><td>[blk.val;block=tr]</td></tr> . . <tr><td>X</td></tr>
</table> include_once ('tbs_class.php)‘? <tr><td>Y</td></tr>
STBS = new clsTinyButStrong ; <tr><td>Z</td></tr>

STBS->LoadTemplate ('template.htm')

7

</table>

$list = array ('X','Y','Z") ;
STBS->MergeBlock ('blk', $1list) ;

STBS—>Show () ;

7>

PHP side:

The merging of a template is done in a PHP program using an object variable declared as a clsTinyButStrong
class.

Example of statement: $TBS = new clsTinyButStrong ;

This object allows you to load a template, to handle the merging of it with data, and then to show the result.

Example of PHP code:

include_once ('tbs_class.php');

STBS = new clsTinyButStrong ;

STBS->LoadTemplate ('template.htm') ;
STBS—->MergeBlock ('ctry', 'mysgl', 'SELECT * FROM t_country') ;
STBS—>Show () ;

Here is the list of the TinyButStrong object's properties and methods:

method LoadTemplate():

Loads a template for the merging process.
The complete contents of the file is stored in the Source property of the TBS object.

Syntax:

STBS—>LoadTemplate (string File{, string HtmlCharSet})

Argument Description

File Local or absolute path of the file to load.

HtmlICharSet Optional. Indicates the character encoding (charset) to use for Html conversion of the
data when they will be merged. It should be the same as the charset of the template. The
default value is "' (empty string) which is equivalent to 'ISO-8859-1' (Latin 1).

If your template uses a special charset, then indicate the Html value for this charset.

In a Html page, the charset is placed at the beginning of the file, in the attribute 'content’
of a <Meta> tag. The charsets supported by TBS are the charsets supported by the PHP
function htmlentities(). For example: 'BIG5' (Chinese) or 'EUCIP' (Japanese).

No Html conversion:
If you use value False as the parameter HtmICharSet, data will to not be converted when merged to the

model.

User function:
If your charset is not yet supported by PHP, you can indicate a user function that will perform the Html

conversion. For this, use the parameter HtmICharSet with the syntax '=myfunction'.
The user function must take a string argument and return the converted string.

Adding the file at the end of the current template:
You can use the keyword '+' instead of the the charset to have the file added to the end of the current

template. Charset parameter stay the same as for the first template.

method MergeBlock():

Merges one or several TBS blocks with records coming from a data source.
Returns the number of the last displayed record (the first is number 1).

TinyButStrong supports several data source types in native:
Php data: an array, a string, a number.

Databases: MySQL ; PostgreSQL ; SQLite.

You can also add a new one: 'adding a data source type'.

There is a display 'By Page' mode, described below.

Syntax: int $TBS->MergeBlock (string BlockName, mixed Source{, string Query}{, int PageSize,
int PageNum}{, int RecCount})

Argument Description

BlockName Indicates the name of the TBS block to merge.
You can merge several blocks with the same data by indicating their names separated by
commas.

Source Indicates the data source to merge.
The table below shows the possible values according to the data source type.

Query Optional. Indicates the SQL statement which returns the records to merge.
The table below shows the possible values according to the data source type.

PageSize Optional. This argument must be defined if you want to activate the By Page mode.
Indicates the number of records on one page.

PageNum Optional. This argument must be defined if you want to activate the By Page mode.
Indicates the number of the page to display. The first page is number 1.
The special value -1 will display the last page of the record set.

RecCount Optional. This argument is useful only with the By Page mode. It allows to adjust the
calculation of the number of records returned by the MergeBlock() method.

RecCount Value returned by MergeBlock()

0: It's the default value. The method returns the number of the last record
displayed in the required page.

-1: The method reads all the records up to the end and returns the total number
of records. However, only records of the required page will be displayed.

>0 : The method returns the value of RecCount. However, it will return the

number of the last record in the required page if it's higher than RecCount.

Use this parameter in order to calculate and save the total number of records.
For example:

if (isset ($S_POST['nbr_rec'])) {
Snbr_rec = $_POST['nbr_rec'] ;
} else {
Snbr_rec = -1 ;

}
Snbr_rec = $TBS->MergeBlock ('blkl', $cnx_id, 'select * from
t_country', $p_size, $p_num, Snbr_rec) ;

Link between the block and the records:

The MergeBlock() method searches in your template for the specified TBS block name. Then, the block
is repeated as many times as there are records in the data source.

To display the data of a record, you have to use a linked TBS Field. A TBS Field is linked when the
name of it is composed of the block's name followed by a dot and a column's or a key's name in the
record set. A linked field must be inside the block.

Example:
Block's name: block1
Columns returned by the query: field1,field2,field3
Linked TBS Fields: [blockl.field1], [blockl.field2], [blockl.field3]

If no block's definition is found in the template, then the MergeBlock() method will merge the first
record with all linked fields found in the template.

You can also define more advanced blocks. For more information, refer to chapter TBS Blocks.

Merging several blocks with the same data:

You can merge several blocks with the same data by indicating their names separated by commas in
the BlockName parameter. In this case, the query is opened only one time, and records are buffered to
feed blocks.

Example:
$TBS->MergeBlock ('blockl,block2,block3', 'mysqgl', 'SELECT * FROM MyTable');

Counting the records:

To display the number of the record, use a TBS Field linked to the virtual column ' #'.
If you put this field outside the block, it will display the total number of records.

Example: [blockl.#]

The virtual column '$' will display the key of the current record if the data source is a Php array.
Example: [blockl.$]

Resource and Request arguments according to the data source type:

Data Source
Type

Text (*)
Number (*)
Clear (%)
Conditional (%)
PHP Array (*)

MySQL

PostgreSQL

SQLite

custom

Source

The keyword 'text'

The keyword 'num’
The keyword 'clear’
The keyword 'cond'
A Php array

The keyword 'array'

The keyword 'array'

A MySql connection identifier or the
keyword 'mysql'

A MySql result identifier

A PostgreSql connection identifier
A PostgreSql result identifier

An SQLite connection identifier

An SQLite result identifier

A keyword, an object or a resource

identifier not mentioned in this table.
See the chapter 'adding a data source

type'.

(*) See explanations in the chapter below.

Php data sources:

Text

The argument Source has to be equal to 'text'.
The whole block is replaced by the text (it must be a string) given as the Query argument. No
linked Fields are processed except '#' which returns 1, or 0 if Query is an empty string.

Number

The argument Source has to be equal to 'num’.
The argument Query can be either a number or an array.

Query
A text

A number or a special array (see below)

A Php Array

A string that represents an array contained or
nested in a PHP global variable (see below)

An SQL statement

An SQL statement

An SQLite statement

An SQL statement or something else.

This number has to be positive or equal to zero. The returned Record Set consists of a
column 'val' where the value goes from 1 to this number .

This array has to contain a key 'min' and a key 'max' and eventually a key 'step'.

The returned Record Set consists of a column 'val' which goes from the 'min' value to

Example: array('min'->101,'max'->150) will display 50 blocks numbered from 101 to

arg Query Returned Record Set
Number:
Array:
the 'max’' value.
150.
Clear

The argument Source has to be the keyword 'clear’.

All blocks and sections are deleted. It is the same thing as merging with an empty array.

Conditional

The argument Source has to be the keyword'cond'.

The block is merged like it was a conditional blocks onload and onshow. The block is not merged
with data, and so it must have no linked TBS field. Each block section needs a parameter when or a
parameter default. See conditional blocks for more details.

Array

The argument Source has to be a PHP Array or the keyword 'array'. If you use the keyword 'array’,
then the argument Query has to be a Php Array or a string that represents an array contained or
nested in a global variable.

String syntax: 'globvar[item1][item2]...'
'globvar' is the name of a global variable $globvar which must be an array.
'item1' and 'item?2' are the keys of an item or a subitem of $globvar.
Example:
$STBS->MergeBlock ('blockl', 'array', 'days[mon]"');
It is possible to represent variable's name without items.

There are two advantages in using a string to represent the array:

-> Items will be read directly in the Array (assigned by reference) instead of reading a copy of the
items. This can improve the performance.

-> You can use dynamic queries.

Displaying the key of current record:

You can use the virtual column '$' which will display the key of the current record. This can be
useful especially for dynamic queries and sub-blocks.

Example: [block1.$]

Structure of supported arrays:
Items of the specified Array can be of two kinds: simple values with associated keys (case 1), or
array values for whom items are themselves simple values with associated keys (case 2).

Case 1:
Example: ['key1']=>valuel
['key2']=>value2

The returned Record Set consists of a column 'key' containing the name of the key, and a column
'val' containing the value of the key.

Case 2:

Example: [0] => (['column1']=>valuel-0 ; ['column2']=>value2-0 ; ...)
[1] => (['columnl']=>valuel-1 ; ['column2']=>value2-1 ; ...)
[2] => (['column1']=>valuel-2 ; ['column2']=>value2-2 ; ...)

The returned Record Set consists of the columns 'column1', 'column2',... with their associated
values.

By Page mode:

The By Page mode is activated when you place in the PageSize argument a value different from zero.
The display of the data will then be limited to the page specified with PageNum. If PageNum has the
value -1, then the last page will be displayed.

Important remark:

Although easy and practical, the By Page mode is not optimized for a large number of records. If the
display is too slow, or if your database is heavily sought, then it is advised to use the native functions
of your Database System (if it has limited queries features).

For example: with MySQL you can use the LIMIT clause.

Explanations: considering the variety of the SQL syntaxes, TinyButStrong is not able to modify a query
so that it returns a limited Record Set. For example, it is not able to add the LIMIT clause into a MySQL
query.

That's why TinyButStrong has to call the original query, and then read the records one by one ignoring
all those who are before the required page. This makes the display more slow when the page number
to be reached is high. When the page is reached, TinyButStrong releases the query without going to
the end of the Record Set.

method Show():

Terminates the merge.
Syntax: $TBS->Show ({int Render})

The Show method will perform the following:

- Merge Var fields,

- Merge [onshow] fields,

- Display the result (can be cancelled by Render property),
- End the script (can be cancelled by Render property).

The Render property allows to adjust the behaviour of the Show() method.
Parameter Render also allows to adjust the behaviour of the Show() method but only for one call.

method CacheAction():

Activates the Cache System or starts another operation on cache files.

Syntax: bool $TBS->CacheAction(string CachelId {, int ActTimeOut}{, string Dir})

Argument Description

Cacheld A string which identifies in a unique way your page in the cache directory.

ActTimeOut Optional. Must be the time-out expressed in seconds or one of the constants below.
The default value is 3600, which means one hour.

Dir Optional. The path of the directory where the cache file is saved.
By default, it is the same directory as the script.

Instead of the time-out, you can use one of the constants below in order to start a special action of the
Cache System.

Constant Description

TBS_DELETE Delete the cache file. If the parameter Cacheld is set to the keyword "*' then all
cache files of the directory are deleted.

TBS_CANCEL Cancel the update of the cache file if it was supposed to be updated at the end of
the merge.

TBS_CACHENOW Save the current result of the merge in the cache file.

TBS_CACHEONSHOW The result of the merge will be saved in the cache file when Show() method is
called.

TBS_CACHELOAD Load the cache file and continue the script.

The Cache System enables you to speed up the display of HTML pages by proceeding the merge at regular
times instead of at each call of the page. For this, you must prepare a unique string identification as part
of file name for each page that should be saved (we call it 'cache file'), and also a refresh period (we call
it time-out). When you call the CacheAction() method the System will look for an existing cache file and
get its creation time. If the creation time is shorter than the time-out then the contents of the cache file
are loaded and the merge ends. If the creation time is longer than the time-out then the cache file is
ignored but it will be updated at the next call of the Show() method by saving the result of the merge in
this cache file.

If the cache file is loaded then the method returns True, otherwise it returns False.

By default, if the file is loaded then the contents are displayed and the script is ended but you can change
this behaviour using the Render property.

method GetBlockSource():

Returns the source of the TBS Block.

Only the definition of the first section of block will be returned, unless the Sections argument is set to
True.

If no block is found, the method returns Faise.

Syntax: string $TBS—->GetBlockSource (string BlockName {, boolean Sections})

Argument Description

BlockName The name of the block to search for.

Sections Optional. The default value is False.
If this parameter is set True the method returns an array that contains the definitions for
all the sections of the named block. The first section is returned into the item [1] of the
array.

This method enables you to get the source of a block in order to manually handle the merging.

After that, if you need to replace the block with text, you can use the MergeBlock() method with the 'text'
parameter.

method MergeField():

Replaces one or several TBS Fields with a fixed value or by calling a user function.
Each TBS fields having the specified base name will be merged.

Syntax: $TBS->MergeField (string BaseName, mixed X {, boolean FunctionMode})

Argument Description
BaseName Base name of the TBS Fields. For example 'account'.
X The value to display or a string that represent the name of a user function.

FunctionMode Indicates that the value to display is calculated by a user function. The default value is
false. If this argument is set to true, then X must be a text string giving the name of the
user function. This function must exist and have the syntax described below.

Merging with a value:

X can be numeric, string, an array or an object. For an array or an object, names of TBS Fields must have
suffixes like Var Fields.

Example:
STBS->MergeField ('account',array ('id'=>55, '"name'=>"'Bob")) ;

In this example, the fields [account.id] and [account.name] will be merged.

Merging with a user function:

TBS calls this function for each field found in the template.
This function must have the following syntax:

function fct_user ($Subname [, S$PrmLst]) {...}
When the function is called, its argument $Subname has for value the suffix of the field's name (example:
for a field named 'ml.title', $Subname will have the value 'title'). And the optional argument $PrmLst
contains an associative array with the field's parameters. The function must return the value to be
merged.

Example:
STBS->MergeField('ml', 'm_multilanguage', true);

function m_multilanguage ($Subname) {
global $lang_id;
Srs = mysqgl_query ("SELECT text_$lang_id AS txt FROM t_language WHERE key='$Subname");
Srec = mysqgl_fetch_array (Srs);
return Srec[['txt'] ;
}
In this example, a field such as [ml.title] will be merged with the value returned by m_multilanguage('title').

method MergeNavigationBar():

Displays a navigation bar based on specific TBS block and TBS fields.
For more details on how to build a navigation bar, please read 'Display a navigation bar'.

Syntax: $TBS->MergeNavigationBar (string NavName, mix Options, int PageNum [, int RecCount,
int PageSizel])

Argument Description
NavName The name of the navigation bar.
Options Enables you to force some options of the navigation bar. Those options can also be

defined using block parameters in the template. But if you put them at the
MergeNavigationBar() too, they will be forced.
This parameter can be blank (", 0 or null), a numeric value or an array.
If it's a numeric value, it indicates the number of pages displayed.
If it's an array, it can contain the following items:
Key Value

'navsize' Number of pages displayed in the navigation bar. (default = 10).
'navpos' Position of the navigation bar compared to the active page number. Use one
of the following keywords:
- 'step' (by default) to have the bar progressing by step.
- 'centred' to center the bar on the active page number.
'navdel' Name of a TBS block to delete when there is only one page or no page to
display.
This TBS block must surroud the navigation bar. If there are several pages to
display then only TBS definition tags of this bloc are deleted.
'pagemin'Number of the first page (default = 1).

PageNum Number of the active page.
The first page is number 1. To indicate the last page, use the value -1.

RecCount Optional. The default value is -1.
Indicates the total number of records, if known. If this number is unknown, you have to
put the value -1. This argument is used only to calculate the number of the last page of
the navigation bar.

PageSize Optional. The default value is 1.
Indicates the number of records per page. It has to be used together with RecCount. It is
used only to calculate the number of the last page of the navigation bar.

Example:

STBS->MergeNavigationBar ('nav', '', Spage, Srec_nbr, $Spage_size);

method MergeSpecial():

Replaces the special blocks and fields of the specified type.Syntax: $TBS->MergeSpecial (string Type)

The argument Type has to be one of the following values:

Value Description

'var' Replaces all Var fields.
'onload' Replaces all onload fields.
'‘onshow' Replaces all onshow fields.
Remark:

By default, the Show() method replaces all the special fields and blocks just before showing the merge
result. That's why it is rare to use MergeSpecial() in a program.

property Render:

Indicates how the merging ends.

The value must be a combination of the following constants.
The default value is (TBS_OUTPUT + TBS_EXIT).

Syntax: int $TBS->Render

The Render property changes the behaviour the methods Show() and CacheAction().

Constant Description
TBS_NOTHING Indicates that none of the actions below are proceeded at the end of the merge.

TBS_OUTPUT Indicates that the result of the merge must be displayed. TBS uses the Php command
Echo.

TBS_EXIT Indicates that we have to quit the script just after the end of the merge.

property Source:

Get or set the HTML source on which the merge process is applied.
After the call to the LoadTemplate() method, this property contains the HTML source of the template.

This property enables you to read or modify the result of the merge, in your code.

Syntax: string $TBS->Source

property TplVars:

Contains the array of template variables corresponding to current template.
Syntax: array $TBS—->TplVars

You can define template variables using one or several onload automatic fields with parameter tplvars.
All other parameters that follow parameter tplvars are added to the TplVars property when the
LoadTemplate() method is called.
Example:
[onload;tplvars;template_version='1.12.27";template_date='2004-10-26']
This TBS tag will create two items equivalent to the PHP code:

STBS—->TplVars|'template_version'] = '1.12.27"';
STBS->TplVars|'template_date'] = '2004-10-26";
Remarks:

- Parameter tplvars works only with onload automatic fields.
- You can use parameter tplvars several times in the same template.

Adding a data source type:

You can add another data source type not yet supported in native by TinyButStrong.

For that, you have to code three functions (or methods) with specific statements, and names
corresponding to the type to add.

Do not add the functions in the TBS source file, code them in your application or in an external Php script.
You can find additional data source types at the TinyButStrong web site.

You have the choice between coding user functions and coding methods of a class.

If you choose to code user functions, they have to have name which use a TBS identifier specific to the
data source you use (see below).

If you choose to code methods of a class, those methods must be named tbsdb_open, tbsdb_fetch and

tbsdb_close.
Example:
class clsTest {
function tbsdb_open(...) {...}
function tbsdb_fetch(...) {...}

function tbsdb_close(...) {...}
}

TBS identifier (for user functions only):

The $Source argument that you pass to the MergeBlock() method has a specific TBS identifier that you
must use for the function naming.

If $Source is an object, then the TBS identifier is the name of Php class.

If $Source is a resource, then the TBS identifier is the resource type.

If $Source is a string, then the TBS identifier is this string.
The type of the $Source argument must not yet be supported in native by TinyButStrong, otherwise the
functions will be ignored.
The TBS identifier may be arranged by TBS to make it fit for a function name.

Example:
If $Source is a Sybase connection (resource type = 'sybase-db link'), then the TBS identifier is
'sybase_db'.

Statements of the functions or methods:

The three functions to add in your application must have the following syntax:

If you are coding user functions, then replace the keyword 'customdb' with the TBS identifier of your data
source type. If you are coding methods , replace the name of the functions with tbsdb_open, tbsdb_fetch
and tbsdb_close.

function tbsdb_customdb_open (&$Source, &SQuery) {...}
This function must open the required query and return a Record Set identifier.
In case of error, the function should return the value False, and can display a message.

Argument Description

$Source Is the same argument given to the MergeBlock() method.
$Query Is the same argument given to the MergeBlock() method.

Example:
function tbsdb_sybase_db_open (&$Source, &SQuery) {
return sybase_query ($Query, $Source) ;

}

function tbsdb_customdb_fetch (&SRs{, SRecNum}) {...}
This function has to return an associative array corresponding to the current record, with columns' names
and values. The function has to return the value False when there is no record left.

Argument Description
$Rs The Record Set identifier returned by the tbsdb_customdb_open() function.
$RecNum Optional. The number of the expected record. First is number 1.

Example:
function tbsdb_sybase_db_fetch (&$SRs) {
return sybase_fetch_assoc(SRs) ;

}

If your data source needs to know the number of the expected record, you can add the argument
$RecNum to your function's statement. But in other cases, this argument is optional because all records
are called in order anyway.

function tbsdb_customdb_close (&SRs) {...}
This function has to close or free the Record Set identifier.
It doesn't have to return a value.

Argument Description
$Rs The Record Set identifier returned by the tbsdb_customdb_open() function.

Example:
function tbsdb_sybase_db_close (&SRs) {
return sybase_free_result (SRs) ;

}

HTML side:

You design your template by placing TBS tags in the places where data items should appear.
There are two types of TBS tags: Fields and Blocks.

A TBS Field is a TBS tag which has to be replaced by a single data item. It is possible to specify a display format
and also other parameters. The syntax for TBS Fields is described below.

A TBS Block is an area which has to be repeated. It is defined using one or two TBS fields.
Most often, it is the row of an HTML table. The syntax for TBS Blocks is described below.

TBS Fields:

A TBS Field is a TBS tag which has to be replaced by a single data item.
It has a name which enables you to identify it and parameters can be supplied in order to change the
display behaviour.

Syntax: HTML ... [FieldName;params] ... HTML

Element Description

FieldName The name of the Field.
Warning: names that begin with var. , onload and onshow are reserved. They are
respectively used for Var fields, and Automatic fields.

params Optional. One or more parameters from the list below and separated with ';'.
Some parameters can be set to a value using the equal sign '=".
Example: frm=0.00
If the value contains spaces or semicolons, you can use single quotes.
Example: frm="'0 000.00'.

Field's parameters:

Parameter

htmlconv=val

. (dot)

ifempty=val

magnet=tag

mtype=val

selected

It is possible to embed TBS fields. It means you can write this: [var.vl; if [var.v2]=1].

- for Var fields, you have to make sure that v2 will be merged before v1.
- for block fields, you have to make sure that column v2 is before column v1.

Description

Enables you to force or prevent the conversion of the data item to Html text.
The value val can be one of the following keywords:

yes: (default value) force the conversion to Html including new lines.

nobr: force the conversion to Html but new lines (useful for <pre> tags for
example).

wsp: preserve white spaces (useful for spaces at the beginning of lines).

no: prevent the conversion to Html. Useful to modify Javascript code or to

modify the Html source.

look: convert the data item to Html only if no Html entities are found inside
the data item.

esc: no Html conversion and double the single quote characters ().

If the data item is empty, then an unbreakable space is displayed. Useful for cells
in tables.

If the data item is empty, then it is replaced with the specified value.

Assign a magnet Html tag to the TBS field. A magnet tag is kept as is when the
field has a value, and is deleted when the field is null or empty string.
Example:
(click here)
Result for $1ink="www.tbs.com': (click here)
Result for s1ink="": ()
By default, the magnet Html tag should be a of pair of opening-closing tags (like
<a>) which first tag is placed before the TBS fields. But this can be changed
using parameter mtype (see below).
Remark: the parameters if then else are processed before parameter magnet.

To be used with parameter magnet. Define the magnet type.

Value Magnet behavior when field is null or empty string
m*m That's the default value. Delete the pair of tags that surrounds the TBS
field. Everything that is between them is deleted also. The field can be
put inside one of the tags.
Example:
(click here)
Result for $1ink="www.tbs.com': (click
here)
Result for s1ink="": ()
m+m Delete the pair of tags that surrounds the TBS field, but keeping
everything else that is between the tags.
Example:
([blk.name])
Result for semail="meRtbs.com': (MyName)
Result for semail="": (MyName)
m* Delete the single tag that is before the field, and everything that is
between the tag and the field.
Example 1:
Example 2:
 [var.address;magnet=br]
*m Delete the single tag that is after the field, and everything that is
between the tag and the field.
Example: [var.address;magnet=br;mtype=*m]

This parameter enables you to select an item for a List, Radio buttons or
Checkboxes placed into a Html form. You have to ensure that items are created
(merged) before the merge.

Html List:
Use the parameter selected without setting a value to it. The TBS Field has to be

http://www.tbs.com
http://www.tbs.com">click
http://www.tbs.com
http://www.tbs.com">click

selbounds=tag

comm

noerr

file=filename

script=filename

getob

placed within the list of values. When the TBS field is merged it is deleted, but the
item which has the same value as the field will be selected. If the value is not
found, a new item is added.

Example:
Boston Boston
Washington Washington
New York New York

[town_id;selected] which will be after the merge:

Radio buttons and Checkboxes:

Use the parameter selected with setting a value to it which is the name of the
Radio buttons or Checkboxes to process. The TBS Field has to be placed within the
form. When the TBS field is merged it is deleted, but the item which has the same
value as the field will be selected.

Example:
C Boston C Boston
[town_id;selected=r_test] @
(“ . .
Washington which will be after the Washington
C New York merge: C New York

In this example, the Radio button captioned 'Washington ' has been selected because the name
of the Radio button tag is "r_test' and its value is 2, and the TBS tag named 'town_id' has been
merged with the value 2.

Multi-selection:
For Lists, Radio buttons or Checkboxes, you can make a multi-selection by giving a
Php array as the value of the TBS field.

Bounds:

By default the bounds for searching items to select are html tags <select> for List
, and <form> for Radio buttons and Checkboxes. But you can change them using
parameter selbounds (see below).

To be used with parameter selected. It enables you to change the search zone for
items to select by indicating a Html tag type. By default, this value is select for a
List, and form for Radio buttons and Checkboxes.

Example: [town_id;selected=r_test;selbounds=div]

In this example, items to select will be searched between <div> and </div>

tags that surround the TBS field.

This parameter enables you to widen the bounds of the TBS Field up to the bounds
of the commentary Html tag which surround it.

<!-- [myfield;comm] this is an example--> is strictly identical to [myfield]

This is particularly useful for the template designing when you are using a Visual
HTML Editor (such as Dreamweaver or FrontPage).

Avoid some of the TBS Error messages. When a message can be cancelled, it is
mentioned in the message.

Replace the field with the contents of the file. Filename can be a string or an
expression built with Var fields that returns the file path.
How to use this parameter is detailed in the chapter include a sub-template.

Execute the Php script just before replacing the locator. From this script, you can
read and write the value of the field using the global variable $tbs_CurrVal.
Filename can be a string or an expression built with Var fields that returns the file
path.

Remark:

- The script will be executed as if it was coded into a function. Therefore, global
variables will not be recognized in the script except if you declare them using
the Php instruction global or if you use $GLOBALS.

- The execution of the script is cancelled if the TBS field has the parameter if with
a false condition.

For more information, please refer to the chapter 'include the result of another PHP
script'.

To be used with the parameter script.
Indicates that the text displayed using the echo() command in the Php script
replaces the value of the TBS Field.

once

if exprl=expr2

then vall

else val2

onformat=fct_name

protect=val

max=val

frm=format

To be used with the parameter script.
Cancel the script execution if it has previously been called.

Display the data item only if the condition is verified, otherwise display nothing
unless parameter then or else are used.
Supported operators are:

=or == equal

I= not equal

+- greater than

+=- greater than or equal to
-+ less than

-=+ less than or equal to

Both exprl and expr2 must be string or numerical expressions. You can use the
keyword [val] inside the expressions to represent the data item. The expressions
may contain TBS fields, but you have to make sure that they are merged before
the containing field.

See parameters then and else for some examples.

If the parameter if is defined and its condition is verified, then the data item is
replaced with vall.

Example:

[var.image;if [val]=";then 'image0.gif']

If the parameter if is defined and its condition is not verified, then the data item is
replaced with val2.

Example:

[var.error_id;if [val]=0;then 'no error';else 'error found']

Indicates the name of a user Php function that will be executed before the merge

of the field. The function fct_name must have the following syntax:
function fct_name ($FieldName, &$CurrvVal) { ... }

Parameter Description
$FieldName Returns the name of the field that is calling the function (read only).

$CurrVal Return the current value (read/write ; don't forget the & character in the
statement).

Enables you to protect or unprotect the data item to be merged by replacing the
characters '[' with their corresponding Html code '&+#91;'. The value val can be one
of the following keywords:

yes: (default value) data item is protected.

no: data item is not protected.
By default, all data merged with a template is protected except if it's a file
inclusion. It is strongly recommended to protect data when it comes from free
enter like on a forum for example.

Indicates the maximum number of characters to display. Beyond this limit, the
data item is cut and an ellipsis (...) is added at the bottom.

Specify a format to display a data item of type date/time or numeric. For a numeric
item, it is possible to use a conditional format which changes depending on the
sign of the value.

Date-time format:

It is a VisualBasic like format. The following keywords are recognized:

d, dd, ddd, dddd: number of the day, number of the day in two digits, short
name of the day, full name of the day. Use parameter
locale to display locale names.

XX displays st, nd, rd or th depending to the number of the
day.

m, mm, mmm, mmmm: number of the month, number of the month in two digits,
short name of the month, full name of the month. Use
parameter locale to display locale names.

YY, YYYY: year in two digits, full year.

hh, nn, ss: hour, minutes, seconds in two digits.

Other characters are kept.
It is possible to protect the strings inside by putting them between single or double
quotes.

locale

tplvars

Var fields:

Examples:
[fld;frm=mm/dd/yyyy] will display 12/21/2002
[fld;frm="yyyy-mm-dd hh:nn:ss'] will display 2002-12-21 15:45:03

Numeric format:

To define the decimal part, use an expression like '0x0..." where 'x' is the decimal
separator , and '0..." is a continuation of zeros corresponding to the number of
decimals.

If there is no decimal, use the format '0."' (with a dot).

To define a thousand separator, use an expression like '0z000x..."' where 'Z' is the
thousand separator. If there is no decimal, use the format '0z000.' (with a dot).

If the format contains the character '%/', then the value to display will be multiplied
by 100. The character '%' is displayed too.

The numerical format may contain other strings. But only the expression with one
or more zeroes placed to the right will be taken as a format, other characters will
be kept.

Examples:
Value Field Display
2456.1426 [fld;frm="'0.000'] 2456.143
[fld;frm="$ 0,000.00'] $ 2,456.14
[fld;frm="$ 0,000.'] 2,456
0.2537 [fld;frm="'0.00 %'] 25.37%
[fld;frm="coef 0.00'] coef 0.25

Conditional formats:

You have the possibility to define up to 4 conditional formats when the value is
respectively positive, negative, zero or null (or empty string). Conditional formats
must be separated by a '|' character. Each conditional format is optional.

Examples:
Value Field Display
2456.1426 [chp;frm="'+0.00|-(0.00)|*|empty'] +2456.14
-156.333 [chp;frm="40.00|-(0.00)|*|empty'] -(156.33)
0 [chp;frm="4+0.00|-(0.00)|*|empty'] *
null [chp;frm="+0.00|-(0.00)|*|empty'] empty
-8.75 [chp;frm="4+0.00]|-(0.00)'] -(8.75)

To be used with the parameter frm.

Indicates that the format specified with frm must display locale day and month's
names.

Locale informations can be set using the PHP function setlocale().

Enables you to define variables in the template that you can retrieve in the Php
programm using TplVars property. Works only with onload automatic fields.

A Var field is a TBS Field which displays a Php variable.
The name of it must be composed by the keyword 'var.' followed by the name of the Php variable.
The parameters for standard TBS Fields are available for Var fields.

For example [var.php_version] will be replaced by "4.2.3".

The user variables and the predefined variables can be merged but they must be global variables.
Resource variables are ignored.

It is possible to merge an Array variable by indicating the item with a dot.
For example: [var.myarray.item]

It is possible to merge an Object variable by indicating a property (or a method which doesn't need any
arguments) with a dot.

For example: [var.myobject.property]

When are Var fields merged?
Var fields are merged in the Show() method, this means just before displaying the merge result. But you
can force the merge at any time with the MergeSpecial() method.

Security: how to limit Var fields usage in templates?

You can limit the Var fields usage by defining an Allowed Variable Prefix when you create the
TinyButStrong object.
Example :
STBS = new clsTinyButStrong('', 'x1_");
In this example, only PHP global variables prefixed by 'x1_' are allowed in the template. Other Var
fields will produce an explicit error message when merging.
[var.x1_title] will be merged if the global variable $x1_title exists.
[var.x2_title] will produce an explicit error message.

NB: the first parameter " de clsTinyButStrong() in the example above is used to define TBS tag
delimiters. But this is not described in this manual.

Special Var fields:

A Special Var field is a TBS Field which displays data provided by the TinyButStrong system.
The name of a Special Var field has to begin with 'var..', followed by a keyword in the list below.
The parameters for standard TBS Fields are available for Special Var fields.

Example: Date of the day : [var..now;frm='mm-dd-yyyy']

Name Description

var..now Date and hour of the server.

var..version The version of TinyButStrong.
var..script_name The name of the PHP file currently executing.

var..template_name The name of the last loaded template file.
It is the name given to the LoadTemplate() method.

var..template_date The creation date of the last loaded template file.

var..template_path The directory of the last loaded template file.
It is the directory given to the LoadTemplate() method.

var..tplvars.* The value of an item set in the TplVars property.
("*' must be the key of an existing item in the array)

When are Special Var fields merged?
Special Var fields are merged with normal Var fields. That is in the Show() method, this means just before
the display of the merge result. But you can force the merge at any time with the MergeSpecial() method.

TBS Blocks:

A TBS block enables you to display data from a record source.
The merging between the block and the data is done using the MergeBlock() method.

During the merge, the TBS block is repeated as many times as there are records; and the associated TBS
fields are replaced by the value of the columns.

A TBS field associated to Blockl and displaying the value of the column ColumnA must be named
Block1.ColumnA

Example: [Blockl.ColumnA;frm="mm-dd-yyyy']

Two blocks with the same name will be regarded as two sections of the same block (see sections of
blocks).

Block syntaxes:
There are three possible syntaxes to define a TBS block:

Explicit Syntax:

Two TBS tags are used. One for the beginning of the block and another for the end of the block.
Example:
HTML...[BlockName;block=begin;params]...HTML...[BlockName;block=end]...HTML

The TBS tags for the block definition will be deleted during the merging.

Relative Syntax:

The block is defined by a pair of opening-closing Html tags. Only one TBS tag is required.
Example:
HTML...<tag_name...>...[BlockName;block=tag_name;params]...</tag_name...>...HTML

The TBS tag for the block definition must be placed between the pair of Html tags.

This TBS tag will be deleted during the merging.

Simplified Syntax:

An associated TBS field is used to define the block in a relative way (see the relative syntax above).
Example:
HTML...<tag_name...>...[BlockName.ColumnName;block=tag_name;params]...</tag_name...>...

The TBS tag for the block definition must be placed between the pair of Html tags.

But it is not necessarily the first TBS field in the block.

Element Description
BlockName The name of the TBS block.

block=begin Indicates the beginning of the block.

block=end Indicates the end of the block.
block= Indicates a block which is between the opening Html tag <tag_name...> and the closing
tag_name Html tag </tag_name...> that are surrounding the TBS tag. Both the opening and

closing Html tags are part of the block.

- row can be used as an alias in order to indicate the row of a table.
block=row is the same as block=tr.

- opt can be used as an alias in order to indicate the item of an HTML list.
block=opt is the same as block=option.

params Optional. One or several parameters from the list below. Separated with ';".

Which syntax to use?

The 'absolute’ syntax is rarely used with Visual Editors because TBS tags have often to be placed between
two Html tags. On the other hand, it is convenient for textual editors.

The 'relative' syntax enables you to indicate a block using only one TBS tag. Furthermore, there is no
need to hide the TBS tag because it will be deleted during the displaying. This syntax is quite practical.

The 'simplified' syntax is really simple. It enables you to define a TBS block and a TBS Field with only one
TBS tag. This syntax is the most current and the most practical.

You can use the 'relative' or the 'absolute' syntax with custom tags using the Html standard.
Example:

<custom_tag>Hello [blkl.column1l;block=custom_tag], how are you?</custom_tag>
Block's parameters:

Parameter Description
extend=n Can be used only with the relative syntax or the simplified syntax.

Extend the block definition upon the n next pairs of tags that follow.

This enables you, for example, to define a block on two rows of a table.
The value n must be an integer different from 0.

If n is negative, then the block is extended upon the previous pairs of tags.

encaps=num Indicates encapsulation level of the TBS tags compared to the HTML tags specified
with the parameter block. The default value is 1.

Example:

[blockl.field1;block=tr;encaps=2] [blockl.field2]

comm

nodata

headergrp=colname

footergrp=colnom

splittergrp=colnom

serial

pl=vall

onsection=fct_name

when exprl=expr2

In the example above, the blue row will be duplicated during the merging because
there is 'encaps=2'.

If 'encaps=1'is set or if the parameter is left off, then it will be the pink row that
is duplicated in the merging.

This parameter enables you to widen the bounds of the TBS tag up to the bounds
of the commentary tag (HTML) surrounding it.

<!-- [block1;block=tr;comm] this is an example--> is strictly identical to
[blockl;block=tr]

This parameter is particularly useful for designing the template when using a
visual HTML editor (such as Dreamweaver or FrontPage).

Indicates a section that is displayed only if there is no data to merge.

Example:

[block1.field1;block=tr] [blockl.field2]
[blockl;block=tr;nodata] There is no data.

For more information about sections, see the chapter 'Sections of blocks'.

Indicates a header section that is displayed each time the value of column
colname changes.

colname must be a valid column name returned by the data source.

You can define several headergrp sections with different columns. Placement's
order of headergrp sections in the block can modify the result.

For more information about sections, see the chapter 'Sections of blocks'.

Indicates a footer section that is displayed each time the value of column colname
changes. See headergrp.

Indicates a splitter section that is displayed each time the value of column
colname changes. See headergrp.

Indicates that the block is a main block which contains serial secondary blocks.
For more information, see the chapter 'serial display (in columns)'.

Indicates the use of a dynamic query. All the occurrences of the string '%p1%'
found in the query given to the MergeBlock() method are replaced by the value
vall.

For more information, see the chapter 'dynamic queries / sub-blocks'.

Indicates the name of a user PHP function that will be executed during the block
merging. The function is called each time a record is displayed. The function
fct_name must have the following syntax:

function fct_name ($BlockName, &§$CurrRec, &$SDetailSrc, $RecNum) { ... }

Parameter Description
$BlockName Returns the name of the block calling the function (read only).

$CurrRec Returns an associative PHP array containing the current record
(read/write ; don't forget the & in the function header).
If you set this variable to False, it ends the merging like it was the
end of the record set.

$DetailSrc Returns the source of the current section (read/write ; don't forget the
& in the function header).
If you set this variable to ", it cancels the displaying of this record.

$RecNum Returns the number of the current record (read only, first record is
number 1).

Use only with conditional blocks. Display the section of the block only if the
condition is verified.
Supported operators are:

=or == equal

= not equal

+- greater than

+=- greater than or equal to
-+ less than

-=+ less than or equal to

Both exprl and expr2 must be string or numerical expressions. The expressions
may contain Var fields.

default Use only with conditional blocks. Indicates a section of block that must be
displayed only if no section of the same block (name) has been displayed.

several Use only with conditional blocks. Indicates that several sections of the block can
be displayed if several conditions are true. By default, sections are exclusive.

Sections of block:

Different blocks having the same name will be regarded as sections of the same block.
Sections can be used to:

- alternate the display (normal sections),

- display something if there is no data (NoData section),

- display a header each time the value of a column changes (HeaderGrp section).

Normal sections:

When you define several normal sections, they will be used alternatively for each record.

Example:

[bl.caption;block=tr]
[bl.caption;block=tr]

In this example, the block named 'b1' contains two normal sections. Records will be displayed alternatively with a green
background and with a blue background.

NoData section:

Display the section if the data source has no records.
The NoData section is defined by adding the parameter nodata.

Example:

[bl.caption;block=tr]
There is nothing[b1;block=tr;nodata]

HeaderGrp section:

Display a header section every time a column's value in the record set changes.
A Header is defined by adding the parameter headergrp=column_name.

Example:

Year [bl.year;block=tr;headergrp=year]

[bl.caption] H[bl.amount;block=tr]

Serial display (in columns):

The serial display enables you to display several records inside a block. For this, you have to use a main
block and secondary blocks.

Example:

H Rec 1 H Rec 2 H Rec 3 H Rec 4 H

H Rec 5 H Rec 6 H Rec 7 H Rec 8 H

Reco| o | |

In this example, main blocks are the blue lines of the table, the secondary blocks are the pink cells.

Syntax:
The main block and its secondary blocks are merged using only one call to the MergeBock() method. The

main block must be defined using the parameter serial. The secondary blocks must be nested into the

main block. The secondary block's names must be the name of the main block followed by "_" and a
number indicating display order.

Example:

| [bx;block=tr;serial][bx_1.txt;block=td] | [bx_2.txt;block=td] [bx_3.txt;block=td] [bx_4.txt;block=td]

The corresponding PHP is:
$STBS->MergeBlock ('bx', $cnx_id, 'SELECT txt FROM t_info ORDER BY txt')

Empty secondary block:

You can specify a special secondary block that will be used to replace unused secondary blocks (without
records). This "Empty" secondary block must have the index 0. It can either be placed inside the main
block with the normal secondary block, or alone inside another serial block. The "empty" secondary block
is optional.

Example:

' [bx;block=tr;serial][bx_1.txt;block=td] | [bx_2.txt;block=td] [bx_3.txt;block=td] [bx_4.txt;block=td]

[bx;block=tr;serial][bx_0;block=td]
No records found.

Remark:
The serial display also works with sections of block and dynamic queries.

Dynamic queries / sub-blocks:

Principles of the dynamic queries:

It is possible to use the MergeBlock() method with a dynamic query.

In your template, you have to define a block by adding the parameters p1, p2, p3,... with their values.
The query given to the MergeBlock() method has to contain marks such as %p1%, %p2%, %p3%, ... in
order to welcome the values of the parameters p1, p2, p3,... .

Each section of the block to be merged that contains a parameter p1 will be computed as a separate block
for which the dynamic query is re-executed. The sections of the block that have no parameter p1l are
combined with the previous section with a parameter p1.

Example:

H [blk.town;block=tr;p1="'france'] H [blk.country] H

H [blk.town;block=tr;p1="us'] H [blk.country]

Corresponding PHP code:
$STBS->MergeBlock ('blk', $cnx_id, "SELECT town, country FROM t_geo WHERE (country='$%$pl%')")

Result of the merge:

Paris france
Toulouse france
Washington us
Boston us

Use with sub-blocks:

Dynamic queries enable you to easily build a system of a main-block with sub-blocks. Here is how you can
do it:

- Create a main block, and then a sub-block inside the main block.

- Link them by adding to the sub-block a parameter pl whose value is a field from the main block.

- At the PHP side, merge the main block first, and then the sub-block.

Example:

Country: [main.country;block=table]
H [sub.town;block=tr;pl=[main.cntr_id]] H

Corresponding PHP code:
$TBS->MergeBlock ('main', $cnx_id, 'SELECT country,cntr_id FROM t_country"')
$STBS—->MergeBlock ('sub', $cnx_id, 'SELECT town FROM t_town WHERE (cntr_id=%pl$%)"')

Result of the merge:

Country: France
Paris

Toulouse

Country: Germany
Berlin

Munich

Country: Spain
Madrid
Barcelona

Remarks:

- The parameter htmlconv=esc enables you to pass protected string values to the query.
- The dynamic queries also work with sections of block and serial display.

Display a navigation bar:

TinyButStrong is able to display a navigation bar using the MergeNavigationBar() method.
It is quite similar to merging a block using MergeBlock() except that there are page numbers instead of
data, and you can use specific fields to display extra info, and options to arrange the navigation bar.

Blocks and fields:

Use a normal TBS block to display the page numbers.

This block will be merged with a virtual data source having as much records as pages to display, and with
the following columns:

Name Description

page Returns the number of a common page, reachable from the navigation bar.
curr Returns the number of the active page.

first Returns the number of the first page (1 by default).

prev Returns the number of the previous page.

next Returns the number of the next page.

last Returns the number of the last page if it's known, otherwise returns -1.

page is the only value that changes and its linked field must be placed inside the block. Others columns
have always the same value and can be placed inside the block as well as outside the block.
Those fields support the parameter endpoint. It will replace the value of the field with an empty string (")
when the active page is equal to first page or last page. This enables you to manage display exceptions
with parameter magnet for example.

Example:

Beginning

In this example, the link will be deleted when the active page is the first page.

The block can contain a special section to display the active page differently.
This section is defined using parameter currpage on the block definition.

Example:

Template:

|< | < |[nav.page;block=td] | [nav.page;block=td;currpage] | > | >

Php code used:
$TBS->MergeNavigationBar ('nav',10,17) ;

Result of the merge:
|[<i<|11]§12]|1314)15]16]17118]19(20{>|>|

Remark: this example doesn't display links.
Options

The block definition can contain parameters that are specific to the navigation bar.
Those options can also be defined as a parameter of the MergeNavigationBar() method.

Parameter Description
navsize=num Number of pages displayed in the navigation bar. (default = 10).

navpos=keyword Position of the navigation bar compared to the active page number. Use one of the
following keywords:
- 'step' (by default) to have the bar progressing by step.
- 'centred' to center the bar on the active page number.

navdel=blockname Name of a TBS block to delete when there is only one page or no page to display.
This TBS block must surroud the navigation bar. If there are several pages to display
then only TBS definition tags of this bloc are deleted.

pagemin=num Number of the first page (default = 1).

Automatic fields and blocks:

onload and onshow are reserved names for TBS fields and blocks that are automatically merged when the
template is loaded by the LoadTemplate() method and when the result is shown by the Show() method.

Automatic fields are merged with an empty value. They accept all TBS field's parameters.
They are useful for sub-template and template variables.

Example:

[onload;file=header.htm]

Automatic blocks are merged as conditional blocks. They accept only conditional block's parameters.
Examples:

[onload;block=tr;when [var.status]==1] Status 1
[onload;block=tr;when [var.status]==2] Status 2
See conditional blocks for more details.

Include a sub-template:

If a TBS field has the parameter file, then this field will be replaced by the contents of the indicated file
during the merging of this file. The value of the parameter file can be a string value or an expression
made by Var fields ([var.*]) and keywords [val] (see definition of TBS fields).

TinyButStrong retrieves the contents of the file as is. If it's a Php script, then this script won't be
executed. To insert the result of a Php script, see 'Include the result of another PHP script'.

If the file to include is an Html file, then TinyButStrong will keep only the body (delimited by a pair of tags
<body> and </body>.

The parameter htmlconv (optional) enables you to precise if the contents of the file have to be converted
to Html or not. By default, it is not converted to Html.

Examples:
[var.page_header;file=[val]]
[var.page_footer;file=foot.htm;htmlconv=yes]

How to precise when the sub-template is included:

Use the automatic fields onload and onshow to precise when the field is merged.

- A field named onload is automatically merged when the LoadTemplate() method is called, just after the
template is loaded.

- A field named onshow is automatically merged when the Show() method is called.

Examples:
[onload;file=[var.article]]
[onshow;file=foot.htm]

Include the result of another PHP script:

If a TBS field has the parameter script, then the script will be executed at the field merging. The value of
the parameter script can be a string value or an expression made by Var fields ([var.*]) and keywords
[val] (see definition of TBS fields).

Examples:
[var.special_process; script=[val];getob]
[onshow;script=end.php;once]

Variable scope:

The script will be executed as if it was coded into a function. Therefore, global variables will not be
recognized in the script except if you declare them using the Php instruction global or if you use
$GLOBALS.

Redirecting the display statements:

If your Php script contains display statements (such as echo), then the text will be displayed normally;
that is instantly and thus without waiting for the result of the template merging. To avoid this behaviour,
you can use the parameter getob which enables you to redirect the text to replace the TBS field.

With getob: texts passed to echo statements will be displayed at the place of the TBS fields.

Without getob: texts passed to echo statements will be displayed normally, that is instantly before the
result of the merge.

Prevent the script from being executed several times:

If the name of the script appears several times in your TBS fields, you can use the parameter once in
order to limit the script to one execution.

How to precise when the script is executed:

You can use automatic fields onload and onshow to precise when the script is executed. For more details
on those special fields, see 'Include a sub-template'.

Conditional display overview:

TinyButStrong offers several tools for conditional display of fields and blocks.
Conditional fields

For any TBS fields you can use parameters for conditional display, repeated below.

Parameter Description

. (dot) Display an Html unbreakable space if the field value is
empty.

ifempty=value2 Display value2 if the field value is empty.

magnet=tag Delete a tag or a pair of tags if the field value is empty.

if condition Display valuel or value2 depending on whether the condition

then valuel is verified or not.

else value2

frm=formatl|format2|format3|format4 Changes the numeric format or date/time format depending
on whether the value is positive, negative, zero or empty.

Example:
[var.error_id;if [val]=0;then 'no error';else 'error found']

Conditional blocks

Conditional blocks are defined like normal blocks except that:

- block definitions must have a parameter when or a parameter default,
- they cannot be merged with data,

- they cannot have linked fields.

You can merge a conditional block using the MergeBlock() method with keyword 'cond', or more usually
using automatic blocks onload and onshow (see more details below).

When you merge a conditional block, each when condition of its sections are evaluated until one is
verified. As soon as one when condition is verified, the section is kept and other sections are deleted. If
no when condition is verified, then the default section is displayed if it exists.

By default sections of a conditional block are exclusives, only one section of a block can be displayed.
Note: the condition definied by parameter when can use Var fields.

Example:

[blockl;block=tr;when [var.light]=1] Light is set to 1.
[blockl;block=tr;when [var.light]=0] Light is set to 0.
[blockl;block=tr;default] Light is not 1 or 0.

This conditional block can be merged using the following code:
STBS—>MergeBlock ('blockl', 'cond') ;

Using automatic blocks:

You can create conditional blocks named onload and onshow (or onload_ and onshow_ with a suffix).
Those blocks will be automatically merged when the template is loaded (onload) or when the result is
shown (onshow).

Using suffix for block names enables you to have several blocks.

Example:

[onload_ligth;block=tr;when [var.light]=1] Light is set to 1.
[onload_ligth;block=tr;when [var.light]=0] Light is set to 0.
[onload_ligth;block=tr;default] Light is not 1 or 0.

This conditional block will be automatically merged when the template is loaded.

Non-exclusive sections:

If you want a block to have non-exclusive sections, you can use parameter several on the first section.
With this parameter, all conditions are evaluated and each true condition makes its section to be
displayed.

Example:

[onload_err;block=tr;when [var.email]=";several] Your email is empty.

[onload_err;block=tr;when [var.name]=0] Your name is empty.

[onload_err;block=tr;default] All is ok.

Summary:

TBS Field's parameters:

Parameter Summary

htmlconv Html conversion Mode for the field's value.

. (dot) If the value is empty, then display an unbreakable space.

ifempty If the value is empty, then display another value.

magnet If the value is empty, then delete surrounding tags.

mtype Use with magnet.

if If the condition is verified, then change the value.

then Use with if.

else Use with if.

onformat Executes a Php user function to modify the field merging.

max Limits the number of characters.

frm Apply a date-time or a numeric format.

locale Use with frm. Display locale day and month's names.

protect Protection mode for characters '['.

selected Selects items in an Html list.

selbounds Use with selected. Change the default bounds for searching items.
comm Extends the field's bounds up to the Commentary tag that surround it.
noerr Avoid some TBS error messages.

file Includes the contents of the file.

script Executes the Php script.

getob Use with script. Retrieves texts passed to echo and puts them to the field's place.
once Use with script. Prevent the script from several executions.

TBS Block's parameters:

Parameter

Summary

block
extend
encaps
comm
nodata
headergrp
footergrp
splittergrp
serial

pl

onsection

Defines the block's bounds.

Extends the block's bounds upon several successive Html tags.

Extends the block's bounds upon several encapsulated Html tags.

Extends the block's bounds up to the Commentary tag that surround it.
Indicates the section that is displayed when there is no data in the data source.
Indicates a header section that is displayed when the value of a column changes.
Indicates a footer section that is displayed when the value of a column changes.
Indicates a splitter section that is displayed when the value of a column changes.
Indicates a section that contains a series of several records.

Sends a parameter to the dynamic query for the data source.

Executes a Php user function to modify the section merging.

tplvars Use with onload fields only. Define template variables.
when Use with onload or onshow. Displays the section when the condition is verified.
default Use with onload or onshow. Displays the section when no section is displayed.

several Use with when. Indicate that several blocks of the group can be displayed.

Fields and parameters for Navigation bar:

Fields Summary

nav.page Displays the number of a page.

nav.curr Displays the number of the current page.

nav.first Displays the number of the first page (allways 1).
nav.prev Displays the number of the previous page.

nav.next Displays the number of the next page.

nav.last Displays the number of the last page (-1 if unknown).

Parameter Summary

currpage Indicates a section that is displayed only for the current page.

endpoint Returns an empty string if the current page is the first page or the last page.

navpos Indicates how the navigation bar is positioned compared to the current page number.
navsize Indicates the number of page to display.

pagemin Indicates the number of the first page.

Names of Special Fields and Blocks:

Name Summary

val The keyword [val] can be used in field's parameters to represent the field's
value.

var.* Displays a Php variable.

var..* Displays information about the TinyButStrong System.

Virtual column name for a block. It displays the record's number.

$ Virtual column name for a block. It displays the record's key if the data source

is a Php Array.
onload Automatic field or block, merged when the template is loaded.

onshow Automatic field or block, merged when the template is shown.

