
Site: www.tinybutstrong.com

Authors: skrol29@freesurf.fr, Pirjo
Date: 2004-11-16

.^..^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*

TinyButStrong
version 2.0

.^..^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*.^.*

 Template Engine for Pro and Beginners
for PHP version 4.0.6 or higher

Table of Contents:

Subject Description

• Introduction
 Basic principles
 Installation
 Mini examples
• PHP side
 • To begin
 method LoadTemplate() load the contents of a template from a file
 method MergeBlock() merge a part of the template with a data source
 method Show() automatic processing and display of the result
 • Advanced
 method CacheAction() activate the Cache System for merge results
 method GetBlockSource() returns the source of the definition of a block
 method MergeField() merge a specific field with a value
 method MergeNavigationBar() merge a navigation bar
 method MergeSpecial() merge automatic fields, PHP variables, and others...
 property Render to alter the merge ending option
 property Source returns the current contents of the result
 property TplVars returns template variables
 Adding a data source type to make TBS recognize a new database type
• HTML side
 • TBS fields
 Definitions and properties
 Var fields
 Special Var fields
 • TBS blocks
 Definitions and properties
 Sections of block
 Serial display (in columns)
 Dynamic queries / sub-blocks
 Display a navigation bar
 • Miscellaneous
 Automatic fields and blocks
 Include a sub-template
 Include the result of another PHP script
 Conditional display overview
• Summary
 TBS Field's parameters
 TBS Block's parameters
 Fields and parameters for Navigation bar
 Names of Special Fields and Blocks

Introduction:

TinyButStrong (TBS) is a PHP class useful to develop an application in a clean way, separating PHP scripts and HTML
files. With TBS, HTML pages are generated dynamically by merging a template with data. It is called a Template Engine.

The name TBS comes from the fact that this tool contains only 8 functions and yet, it is very powerful. It allows you to
merge HTML page templates with your PHP variables or your MySQL, PostgreSQL, or SQLite.

TBS has been engineered so that you can develop your HTML page templates with ease using any visual HTML editors
(like Dreamweaver or FrontPage). But if you are used to designing your HTML pages with a text editor, it is nice as well.

http://www.tinybutstrong.com/index.php?lang=fr
mailto:skrol29@freesurf.fr

TBS also enables you to create JavaScript dynamically.

As the name of it tells, TBS is easy to use, strong and fast. It is completely °~° freeware °~°.

Basic principles:

On the HTML side:
You design a page which does not necessarily contain any PHP scripts, nor any programming. In this page you place TBS
tags in the places where you want to display the dynamic data. This page is called a 'template'.
There are two types of tags: the 'fields' which are used to display dynamic data items, and the 'blocks' which are used to
define an area, mostly in order to display records from a data source.

On the PHP side:
You use an object TBS variable to manage the merge of your HTML Template with the data. At the end, TBS shows the
result of the merge.

Installation:

1. Copy the file tbs_class.php in a directory of your Web site.
2. At the beginning of your PHP program, add the lines:

 include_once('tbs_class.php');

 $TBS = new clsTinyButStrong ;
Remark: if the TBS file tbs_class.php is in a different directory than your application, then you have to precise the directory in front of the
TBS file name.

Explanations and technical details:
TinyButStrong is a library written in PHP, it's a component to be referenced in your own PHP programs. In technical
terms, TinyButStrong is a PHP 'class' ; the name of this class is clsTinyButStrong.
The variable $TBS that you add at the beginning of your PHP program enables you to execute the merge of your
template from your PHP application. In technical terms, the variable $TBS is an 'instance' of the clsTinyButStrong class.

Mini examples:

Example 1:

Html Template Php Program Result

<html>
 <body>
 [var.message]
 </body>
</html>

<?

include_once('tbs_class.php');
$TBS = new clsTinyButStrong ;
$TBS->LoadTemplate('template.htm') ;

$message = 'Hello' ;
$TBS->Show() ;

?>

<html>
 <body>
 Hello
 </body>
</html>

Example 2:

Html Template Php Program Result

<table>
 <tr><td>[blk.val;block=tr]</td></tr>
</table>

<?

include_once('tbs_class.php');
$TBS = new clsTinyButStrong ;
$TBS-
>LoadTemplate('template.htm') ;

$list = array('X','Y','Z') ;
$TBS->MergeBlock('blk',$list) ;
$TBS->Show() ;

?>

<table>
 <tr><td>X</td></tr>
 <tr><td>Y</td></tr>
 <tr><td>Z</td></tr>
</table>

PHP side:

The merging of a template is done in a PHP program using an object variable declared as a clsTinyButStrong class.
Example of statement: $TBS = new clsTinyButStrong ;
This object allows you to load a template, to handle the merging of it with data, and then to show the result.

Example of PHP code:

include_once('tbs_class.php');

$TBS = new clsTinyButStrong ;
$TBS->LoadTemplate('template.htm') ;
$TBS->MergeBlock('ctry','mysql','SELECT * FROM t_country') ;
$TBS->Show() ;

Here is the list of the TinyButStrong object's properties and methods:

method LoadTemplate():

Loads a template for the merging process.
The complete contents of the file is stored in the Source property of the TBS object.

Syntax:

$TBS->LoadTemplate(string File{, string HtmlCharSet})

Argument Description

File Local or absolute path of the file to load.

HtmlCharSet Optional. Indicates the character encoding (charset) to use for Html conversion of the data when
they will be merged. It should be the same as the charset of the template. The default value is ''
(empty string) which is equivalent to 'ISO-8859-1' (Latin 1).

If your template uses a special charset, then indicate the Html value for this charset.
In a Html page, the charset is placed at the beginning of the file, in the attribute 'content' of a
<Meta> tag. The charsets supported by TBS are the charsets supported by the PHP function
htmlentities(). For example: 'BIG5' (Chinese) or 'EUCJP' (Japanese).

No Html conversion:
If you use value False as the parameter HtmlCharSet, data will to not be converted when merged to the model.

User function:
If your charset is not yet supported by PHP, you can indicate a user function that will perform the Html
conversion. For this, use the parameter HtmlCharSet with the syntax '=myfunction'.
The user function must take a string argument and return the converted string.

Adding the file at the end of the current template:
You can use the keyword '+' instead of the the charset to have the file added to the end of the current template.
Charset parameter stay the same as for the first template.

method MergeBlock():

Merges one or several TBS blocks with records coming from a data source.
Returns the number of the last displayed record (the first is number 1).

TinyButStrong supports several data source types in native:
Php data: an array, a string, a number.
Databases: MySQL ; PostgreSQL ; SQLite.
You can also add a new one: 'adding a data source type'.

There is a display 'By Page' mode, described below.

Syntax: int $TBS->MergeBlock(string BlockName, mixed Source{, string Query}{, int PageSize, int
PageNum}{, int RecCount})

Argument Description

BlockName Indicates the name of the TBS block to merge.
You can merge several blocks with the same data by indicating their names separated by
commas.

Source Indicates the data source to merge.
The table below shows the possible values according to the data source type.

Query Optional. Indicates the SQL statement which returns the records to merge.
The table below shows the possible values according to the data source type.

PageSize Optional. This argument must be defined if you want to activate the By Page mode.
Indicates the number of records on one page.

http://www.php.net/htmlentities

PageNum Optional. This argument must be defined if you want to activate the By Page mode.
Indicates the number of the page to display. The first page is number 1.
The special value -1 will display the last page of the record set.

RecCount Optional. This argument is useful only with the By Page mode. It allows to adjust the calculation
of the number of records returned by the MergeBlock() method.

RecCount Value returned by MergeBlock()
0 : It's the default value. The method returns the number of the last record displayed in

the required page.
-1 : The method reads all the records up to the end and returns the total number of

records. However, only records of the required page will be displayed.
>0 : The method returns the value of RecCount. However, it will return the number of

the last record in the required page if it's higher than RecCount.

Use this parameter in order to calculate and save the total number of records.
For example:

if (isset($_POST['nbr_rec'])) {
 $nbr_rec = $_POST['nbr_rec'] ;
} else {
 $nbr_rec = -1 ;
}
$nbr_rec = $TBS->MergeBlock('blk1',$cnx_id,'select * from
t_country',$p_size,$p_num,$nbr_rec);

Link between the block and the records:

The MergeBlock() method searches in your template for the specified TBS block name. Then, the block is
repeated as many times as there are records in the data source.
To display the data of a record, you have to use a linked TBS Field. A TBS Field is linked when the name of it
is composed of the block's name followed by a dot and a column's or a key's name in the record set. A linked
field must be inside the block.

Example:
Block's name: block1
Columns returned by the query: field1,field2,field3
Linked TBS Fields: [block1.field1], [block1.field2], [block1.field3]

If no block's definition is found in the template, then the MergeBlock() method will merge the first record with
all linked fields found in the template.

You can also define more advanced blocks. For more information, refer to chapter TBS Blocks.

Merging several blocks with the same data:

You can merge several blocks with the same data by indicating their names separated by commas in the
BlockName parameter. In this case, the query is opened only one time, and records are buffered to feed
blocks.
Example:
$TBS->MergeBlock('block1,block2,block3','mysql','SELECT * FROM MyTable');

Counting the records:

To display the number of the record, use a TBS Field linked to the virtual column '#'.
If you put this field outside the block, it will display the total number of records.
Example: [block1.#]

The virtual column '$' will display the key of the current record if the data source is a Php array.
Example: [block1.$]

Resource and Request arguments according to the data source type:

Data Source
Type Source Query

Text (*) The keyword 'text' A text

Number (*) The keyword 'num' A number or a special array (see
below)

Clear (*) The keyword 'clear' -

Conditional (*) The keyword 'cond' -

PHP Array (*) A Php array -

The keyword 'array' A Php Array

The keyword 'array' A string that represents an array
contained or nested in a PHP
global variable (see below)

MySQL A MySql connection identifier or
the keyword 'mysql'

An SQL statement

A MySql result identifier -

PostgreSQL A PostgreSql connection
identifier

An SQL statement

A PostgreSql result identifier -

SQLite An SQLite connection identifier An SQLite statement

An SQLite result identifier -

custom A keyword, an object or a
resource identifier not
mentioned in this table.
See the chapter 'adding a data
source type'.

An SQL statement or something
else.

(*) See explanations in the chapter below.

Php data sources:

Text
The argument Source has to be equal to 'text'.
The whole block is replaced by the text (it must be a string) given as the Query argument. No linked Fields
are processed except '#' which returns 1, or 0 if Query is an empty string.

Number
The argument Source has to be equal to 'num'.
The argument Query can be either a number or an array.

arg Query Returned Record Set
Number: Query has to be positive or equal to zero.

The returned Record Set consists of a column 'val' where the value goes from 1 to Query.
Array: The array has to contain a key 'min' and a key 'max' and eventually a key 'step'.

The returned Record Set consists of a column 'val' which goes from the 'min' value to the
'max' value.
Example: array('min'->101,'max'->150) will display 50 blocks numbered from 101 to 150.

Clear
The argument Source has to be the keyword 'clear'.
All blocks and sections are deleted. It is the same thing as merging with an empty array.

Conditional
The argument Source has to be the keyword'cond'.
The block is merged like it was a conditional blocks onload and onshow. The block is not merged with data,
and so it must have no linked TBS field. Each block section needs a parameter when or a parameter
default. See conditional blocks for more details.

Array
The argument Source has to be a PHP Array or the keyword 'array'. If you use the keyword 'array', then
the argument Query has to be a Php Array or a string that represents an array contained or nested in a
global variable.

String syntax: 'globvar[item1][item2]...'
'globvar' is the name of a global variable $globvar which must be an array.
'item1' and 'item2' are the keys of an item or a subitem of $globvar.
Example:
 $TBS->MergeBlock('block1','array','days[mon]');
It is possible to represent variable's name without items.

There are two advantages in using a string to represent the array:
-> Items will be read directly in the Array (assigned by reference) instead of reading a copy of the items.
This can improve the performance.
-> You can use dynamic queries.

Displaying the key of current record:
You can use the virtual column '$' which will display the key of the current record. This can be useful
especially for dynamic queries and sub-blocks.
Example: [block1.$]

Structure of supported arrays:

Items of the specified Array can be of two kinds: simple values with associated keys (case 1), or array
values for whom items are themselves simple values with associated keys (case 2).

Case 1:
Example: ['key1']=>value1

['key2']=>value2
...

The returned Record Set consists of a column 'key' containing the name of the key, and a column 'val'
containing the value of the key.

Case 2:
Example: [0] => (['column1']=>value1-0 ; ['column2']=>value2-0 ; ...)

[1] => (['column1']=>value1-1 ; ['column2']=>value2-1 ; ...)
[2] => (['column1']=>value1-2 ; ['column2']=>value2-2 ; ...)
...

The returned Record Set consists of the columns 'column1', 'column2',... with their associated values.

By Page mode:

The By Page mode is activated when you place in the PageSize argument a value different from zero. The
display of the data will then be limited to the page specified with PageNum. If PageNum has the value -1, then
the last page will be displayed.

Important remark:

Although easy and practical, the By Page mode is not optimized for a large number of records. If the display is
too slow, or if your database is heavily sought, then it is advised to use the native functions of your Database
System (if it has limited queries features).
For example: with MySQL you can use the LIMIT clause.

Explanations: considering the variety of the SQL syntaxes, TinyButStrong is not able to modify a query so that
it returns a limited Record Set. For example, it is not able to add the LIMIT clause into a MySQL query.
That's why TinyButStrong has to call the original query, and then read the records one by one ignoring all
those who are before the required page. This makes the display more slow when the page number to be
reached is high. When the page is reached, TinyButStrong releases the query without going to the end of the
Record Set.

method Show():

Terminates the merge.

Syntax: $TBS->Show({int Render})

The Show method will perform the following:
- Merge Var fields,
- Merge [onshow] fields,
- Display the result (can be cancelled by Render property),
- End the script (can be cancelled by Render property).

The Render property allows to adjust the behaviour of the Show() method.
Parameter Render also allows to adjust the behaviour of the Show() method but only for one call.

method CacheAction():

Activates the Cache System or starts another operation on cache files.

Syntax: bool $TBS->CacheAction(string CacheId {, int ActTimeOut}{, string Dir})

Argument Description

CacheId A string which identifies in a unique way your page in the cache directory.

ActTimeOut Optional. Must be the time-out expressed in seconds or one of the constants below.
The default value is 3600, which means one hour.

Dir Optional. The path of the directory where the cache file is saved.
By default, it is the same directory as the script.

Instead of the time-out, you can use one of the constants below in order to start a special action of the Cache
System.

Constant Description

TBS_DELETE Delete the cache file. If the parameter CacheId is set to the keyword '*' then all cache
files of the directory are deleted.

TBS_CANCEL Cancel the update of the cache file if it was supposed to be updated at the end of the
merge.

TBS_CACHENOW Save the current result of the merge in the cache file.

TBS_CACHEONSHOW The result of the merge will be saved in the cache file when Show() method is called.

TBS_CACHELOAD Load the cache file and continue the script.

The Cache System enables you to speed up the display of HTML pages by proceeding the merge at regular times
instead of at each call of the page. For this, you must prepare a unique string identification as part of file name
for each page that should be saved (we call it 'cache file'), and also a refresh period (we call it time-out). When
you call the CacheAction() method the System will look for an existing cache file and get its creation time. If the
creation time is shorter than the time-out then the contents of the cache file are loaded and the merge ends. If
the creation time is longer than the time-out then the cache file is ignored but it will be updated at the next call
of the Show() method by saving the result of the merge in this cache file.

If the cache file is loaded then the method returns True, otherwise it returns False.
By default, if the file is loaded then the contents are displayed and the script is ended but you can change this
behaviour using the Render property.

method GetBlockSource():

Returns the source of the TBS Block.
Only the definition of the first section of block will be returned, unless the Sections argument is set to True.
If no block is found, the method returns False.

Syntax: string $TBS->GetBlockSource(string BlockName {, boolean Sections})

Argument Description

BlockName The name of the block to search for.

Sections Optional. The default value is False.
If this parameter is set True the method returns an array that contains the definitions for all the
sections of the named block. The first section is returned into the item [1] of the array.

This method enables you to get the source of a block in order to manually handle the merging.
After that, if you need to replace the block with text, you can use the MergeBlock() method with the 'text'
parameter.

method MergeField():

Replaces one or several TBS Fields with a fixed value or a function.

Syntax: $TBS->MergeField(string FieldName, mixed ... {, boolean FunctionMode})

Argument Description

FieldName The name of the TBS Field. For example 'Title'.

... The value to display or the name of a user function.

FunctionMode Indicates that the field must be merged with the value returned by a user function. The default
value is false.
The user function must have one argument (for example: $suffix). During the merging, the user
function will be called for each TBS field with the indicated name. If the name of the Field has a
suffix, this suffix is given as argument to the function.

Example:

$TBS->MergeField('ml','m_multilanguage',true);
...
function m_multilanguage($suffix) {
 global $lang_id;
 $rs = mysql_query("SELECT text_$lang_id AS txt FROM t_langue WHERE
cle='$suffix'");
 $rec = mysql_fetch_array($rs);
 return $rec['txt'] ;
}

In this example, a field such as [ml.title] will be merged with the value returned by m_multilanguage('title').

If several TBS Fields have the same name in the template, they will all be processed.

method MergeNavigationBar():

Displays a navigation bar based on specific TBS block and TBS fields.
For more details on how to build a navigation bar, please read 'Display a navigation bar'.

Syntax: $TBS->MergeNavigationBar(string NavName, mix Options, int PageNum [, int RecCount, int
PageSize])

Argument Description

NavName The name of the navigation bar.

Options Enables you to force some options of the navigation bar. Those options can also be defined using
block parameters in the template. But if you put them at the MergeNavigationBar() too, they will
be forced.
This parameter can be blank ('', 0 or null), a numeric value or an array.
If it's a numeric value, it indicates the number of pages displayed.
If it's an array, it can contain the following items:

Key Value
'navsize' Number of pages displayed in the navigation bar. (default = 10).
'navpos' Position of the navigation bar compared to the active page number. Use one of the

following keywords:
- 'step' (by default) to have the bar progressing by step.
- 'centred' to center the bar on the active page number.

'navdel' Name of a TBS block to delete when there is only one page or no page to display.
This TBS block must surroud the navigation bar. If there are several pages to
display then only TBS definition tags of this bloc are deleted.

'pagemin'Number of the first page (default = 1).

PageNum Number of the active page.
The first page is number 1. To indicate the last page, use the value -1.

RecCount Optional. The default value is -1.
Indicates the total number of records, if known. If this number is unknown, you have to put the
value -1. This argument is used only to calculate the number of the last page of the navigation
bar.

PageSize Optional. The default value is 1.
Indicates the number of records per page. It has to be used together with RecCount. It is used
only to calculate the number of the last page of the navigation bar.

Example:

$TBS->MergeNavigationBar('nav','',$page,$rec_nbr,$page_size);

method MergeSpecial():

Replaces the special blocks and fields of the specified type.Syntax: $TBS->MergeSpecial(string Type)

The argument Type has to be one of the following values:

Value Description

'var' Replaces all Var fields.

'onload' Replaces all onload fields.

'onshow' Replaces all onshow fields.

Remark:
By default, the Show() method replaces all the special fields and blocks just before showing the merge result.
That's why it is rare to use MergeSpecial() in a program.

property Render:

Indicates how the merging ends.
The value must be a combination of the following constants.
The default value is (TBS_OUTPUT + TBS_EXIT).

Syntax: int $TBS->Render

The Render property changes the behaviour the methods Show() and CacheAction().

Constant Description

TBS_NOTHING Indicates that none of the actions below are proceeded at the end of the merge.

TBS_OUTPUT Indicates that the result of the merge must be displayed. TBS uses the Php command Echo.

TBS_EXIT Indicates that we have to quit the script just after the end of the merge.

property Source:

Get or set the HTML source on which the merge process is applied.
After the call to the LoadTemplate() method, this property contains the HTML source of the template.
This property enables you to read or modify the result of the merge, in your code.

Syntax: string $TBS->Source

property TplVars:

Contains the array of template variables corresponding to current template.

Syntax: array $TBS->TplVars

You can define template variables using one or several onload automatic fields with parameter tplvars.
All other parameters that follow parameter tplvars are added to the TplVars property when the LoadTemplate()
method is called.

Example:
 [onload;tplvars;template_version='1.12.27';template_date='2004-10-26']
This TBS tag will create two items equivalent to the PHP code:
 $TBS->TplVars['template_version'] = '1.12.27';

 $TBS->TplVars['template_date'] = '2004-10-26';
Remarks:
- Parameter tplvars works only with onload automatic fields.
- You can use parameter tplvars several times in the same template.

Adding a data source type:

You can add another data source type not yet supported in native by TinyButStrong.
For that, you have to code three functions with specific statements, and names corresponding to the type to add.
Do not add the functions in the TBS source file, code them in your application or in an external Php script.

You can find additional data source types at the TinyButStrong web site.

TBS identifier:

The $Source argument that you pass to the MergeBlock() method has a specific TBS identifier that you must use
for the function naming.

If $Source is an object, then the TBS identifier is the name of Php class.
If $Source is a resource, then the TBS identifier is the resource type.
If $Source is a string, then the TBS identifier is this string.

The type of the $Source argument must not yet be supported by TinyButStrong, otherwise the functions will be
ignored.
The TBS identifier may be arranged by TBS to make it fit for a function name.

Example:
If $Source is a Sybase connection (resource type = 'sybase-db link'), then the TBS identifier is 'sybase_db'.

Statements of the functions:

The three functions to add in your application must have the following syntax:
Replace the keyword 'customdb' with the TBS identifier of your data source type.

function tbsdb_customdb_open(&$Source,&$Query) {...}
This function must open the required query and return a Record Set identifier.

http://www.tinybutstrong.com/

In case of error, the function should return the value False, and can display a message.

Argument Description
$Source Is the same argument given to the MergeBlock() method.
$Query Is the same argument given to the MergeBlock() method.

Example:
function tbsdb_sybase_db_open(&$Source,&$Query) {
 return sybase_query($Query,$Source) ;
}

function tbsdb_customdb_fetch(&$Rs{,$RecNum}) {...}
This function has to return an associative array corresponding to the current record, with columns' names and
values. The function has to return the value False when there is no record left.

Argument Description
$Rs The Record Set identifier returned by the tbsdb_customdb_open() function.
$RecNum Optional. The number of the expected record. First is number 1.

Example:
function tbsdb_sybase_db_fetch(&$Rs) {
 return sybase_fetch_assoc($Rs) ;
}

If your data source needs to know the number of the expected record, you can add the argument $RecNum to
your function's statement. But in other cases, this argument is optional because all records are called in order
anyway.

function tbsdb_customdb_close(&$Rs) {...}
This function has to close or free the Record Set identifier.
It doesn't have to return a value.

Argument Description
$Rs The Record Set identifier returned by the tbsdb_customdb_open() function.

Example:
function tbsdb_sybase_db_close(&$Rs) {
 return sybase_free_result($Rs) ;
}

HTML side:

You design your template by placing TBS tags in the places where data items should appear.

There are two types of TBS tags: Fields and Blocks.

A TBS Field is a TBS tag which has to be replaced by a single data item. It is possible to specify a display format and
also other parameters. The syntax for TBS Fields is described below.

A TBS Block is an area which has to be repeated. It is defined using one or two TBS fields.
Most often, it is the row of an HTML table. The syntax for TBS Blocks is described below.

TBS Fields:

A TBS Field is a TBS tag which has to be replaced by a single data item.
It has a name which enables you to identify it and parameters can be supplied in order to change the display
behaviour.

Syntax: HTML ... [FieldName;params] ... HTML

Element Description

FieldName The name of the Field.
Warning: names that begin with var. , onload and onshow are reserved. They are respectively
used for Var fields, and Automatic fields.

params Optional. One or more parameters from the list below and separated with ';'.
Some parameters can be set to a value using the equal sign '='.
Example: frm=0.00
If the value contains spaces or semicolons, you can use single quotes.
Example: frm='0 000.00'.

It is possible to embed TBS fields. It means you can write this: [var.v1; if [var.v2]=1]. But:
- for Var fields, you have to make sure that v2 will be merged before v1.
- for block fields, you have to make sure that column v2 is before column v1.

Parameter Description

htmlconv=val Enables you to force or prevent the conversion of the data item to Html text.
The value val can be one of the following keywords:

yes: (default value) force the conversion to Html including new lines.
nobr: force the conversion to Html but new lines (useful for <pre> tags for

example).
wsp: preserve white spaces (useful for spaces at the beginning of lines).
no: prevent the conversion to Html. Useful to modify Javascript code or to modify

the Html source.
look: convert the data item to Html only if no Html entities are found inside the data

item.
esc: no Html conversion and double the single quote characters (').

. (dot) If the data item is empty, then an unbreakable space is displayed. Useful for cells in
tables.

ifempty=val If the data item is empty, then it is replaced with the specified value.

magnet=tag Assign a magnet Html tag to the TBS field. A magnet tag is kept as is when the field has a
value, and is deleted when the field is null or empty string.

Example:
(click here)
Result for $link='www.tbs.com': (click here)
Result for $link='': ()

By default, the magnet Html tag should be a of pair of opening-closing tags (like
<a>) which first tag is placed before the TBS fields. But this can be changed using
parameter mtype (see below).
Remark: the parameters if then else are processed before parameter magnet.

mtype=val To be used with parameter magnet. Define the magnet type.

Value Magnet behavior when field is null or empty string
m*m That's the default value. Delete the pair of tags that surrounds the TBS field.

Everything that is between them is deleted also. The field can be put inside
one of the tags.

Example:
(click here)
Result for $link='www.tbs.com': (click
here)
Result for $link='': ()

m+m Delete the pair of tags that surrounds the TBS field, but keeping everything
else that is between the tags.

Example:
([blk.name])
Result for $email='me@tbs.com': (MyName)
Result for $email='': (MyName)

m* Delete the single tag that is before the field, and everything that is between
the tag and the field.

Example 1:
Example 2:
 [var.address;magnet=br]

*m Delete the single tag that is after the field, and everything that is between
the tag and the field.

Example: [var.address;magnet=br;mtype=*m]

selected This parameter enables you to select an item for a List, Radio buttons or Checkboxes
placed into a Html form. You have to ensure that items are created (merged) before the
merge.

Html List:
Use the parameter selected without setting a value to it. The TBS Field has to be placed
within the list of values. When the TBS field is merged it is deleted, but the item which has
the same value as the field will be selected. If the value is not found, a new item is added.

Example:

 which will be after the merge:

Radio buttons and Checkboxes:
Use the parameter selected with setting a value to it which is the name of the Radio
buttons or Checkboxes to process. The TBS Field has to be placed within the form. When
the TBS field is merged it is deleted, but the item which has the same value as the field
will be selected.

Example:

 Boston [town_id;selected=r_test]

 Washington

 New York which will be after the merge:

 Boston

 Washington

 New York

In this example, the Radio button captioned 'Washington ' has been selected because the name of the
Radio button tag is ''r_test' and its value is 2, and the TBS tag named 'town_id' has been merged with
the value 2.

Multi-selection:
For Lists, Radio buttons or Checkboxes, you can make a multi-selection by giving a Php
array as the value of the TBS field.

Bounds:
By default the bounds for searching items to select are html tags <select> for List , and
<form> for Radio buttons and Checkboxes. But you can change them using parameter
selbounds (see below).

selbounds=tag To be used with parameter selected. It enables you to change the search zone for items to
select by indicating a Html tag type. By default, this value is select for a List, and form for
Radio buttons and Checkboxes.

Example: [town_id;selected=r_test;selbounds=div]
In this example, items to select will be searched between <div> and </div> tags that
surround the TBS field.

comm This parameter enables you to widen the bounds of the TBS Field up to the bounds of the
commentary Html tag which surround it.
<!-- [myfield;comm] this is an example--> is strictly identical to [myfield]
This is particularly useful for the template designing when you are using a Visual HTML
Editor (such as Dreamweaver or FrontPage).

noerr Avoid some of the TBS Error messages. When a message can be cancelled, it is mentioned
in the message.

file=filename Replace the field with the contents of the file. Filename can be a string or an expression
built with Var fields that returns the file path.
How to use this parameter is detailed in the chapter include a sub-template.

script=filename Execute the Php script just before replacing the locator. From this script, you can read and
write the value of the field using the global variable $tbs_CurrVal.
Filename can be a string or an expression built with Var fields that returns the file path.
Remark:
- The script will be executed as if it was coded into a function. Therefore, global
variables will not be recognized in the script except if you declare them using the Php
instruction global or if you use $GLOBALS.

- The execution of the script is cancelled if the TBS field has the parameter if with a false
condition.
For more information, please refer to the chapter 'include the result of another PHP script'.

getob To be used with the parameter script.
Indicates that the text displayed using the echo() command in the Php script replaces the
value of the TBS Field.

http://php.net/language.variables.scope

once To be used with the parameter script.
Cancel the script execution if it has previously been called.

if expr1=expr2 Display the data item only if the condition is verified.
Supported operators are:

= or == equal
!= not equal
+- greater than
+=- greater than or equal to
-+ less than
-=+ less than or equal to

Both expr1 and expr2 must be string or numerical expressions. You can use the keyword
[val] inside the expressions to represent the data item. The expressions may contain TBS
fields, but you have to make sure that they are merged before the containing field.

then val1 If the parameter if is defined and its condition is verified, then the data item is replaced
with val1.
You can use the keyword [val] inside the expression to represent the data item.

else val2 If the parameter if is defined and its condition is not verified, then the data item is
replaced with val2.
You can use the keyword [val] inside the expression to represent the data item.

onformat=fct_name Indicates the name of a user Php function that will be executed before the merge of the
field. The function fct_name must have the following syntax:
 function fct_name($FieldName,&$CurrVal) { ... }

Parameter Description

$FieldName Returns the name of the field that is calling the function (read only).

$CurrVal Return the current value (read/write ; don't forget the & character in the
statement).

protect=val Enables you to protect or unprotect the data item to be merged by replacing the
characters '[' with their corresponding Html code '['. The value val can be one of the
following keywords:
 yes: (default value) data item is protected.
 no: data item is not protected.
By default, all data merged with a template is protected except if it's a file inclusion. It is
strongly recommended to protect data when it comes from free enter like on a forum for
example.

max=val Indicates the maximum number of characters to display. Beyond this limit, the data item
is cut and an ellipsis (...) is added at the bottom.

frm=format Specify a format to display a data item of type date/time or numeric. For a numeric item,
it is possible to use a conditional format which changes depending on the sign of the
value.

Date-time format:

It is a VisualBasic like format. The following keywords are recognized:
d, dd, ddd, dddd: number of the day, number of the day in two digits, short name

of the day, full name of the day. Use parameter locale to display
locale names.

xx displays st, nd, rd or th depending to the number of the day.
m, mm, mmm, mmmm: number of the month, number of the month in two digits, short

name of the month, full name of the month. Use parameter locale
to display locale names.

yy, yyyy: year in two digits, full year.
hh, nn, ss: hour, minutes, seconds in two digits.

Other characters are kept.
It is possible to protect the strings inside by putting them between single or double
quotes.

Examples:
 [fld;frm=mm/dd/yyyy] will display 12/21/2002
 [fld;frm='yyyy-mm-dd hh:nn:ss'] will display 2002-12-21 15:45:03

Numeric format:

To define the decimal part, use an expression like '0x0...' where 'x' is the decimal
separator , and '0...' is a continuation of zeros corresponding to the number of decimals.
If there is no decimal, use the format '0.' (with a dot).

To define a thousand separator, use an expression like '0z000x...' where 'z' is the

thousand separator. If there is no decimal, use the format '0z000.' (with a dot).

If the format contains the character '%', then the value to display will be multiplied by
100. The character '%' is displayed too.

The numerical format may contain other strings. But only the expression with one or more
zeroes placed to the right will be taken as a format, other characters will be kept.

Examples:
Value Field Display
2456.1426 [fld;frm='0.000'] 2456.143
 [fld;frm='$ 0,000.00'] $ 2,456.14
 [fld;frm='$ 0,000.'] 2,456
0.2537 [fld;frm='0.00 %'] 25.37%
 [fld;frm='coef 0.00'] coef 0.25

Conditional formats:

You have the possibility to define up to 4 conditional formats when the value is
respectively positive, negative, zero or null (or empty string). Conditional formats must be
separated by a '|' character. Each conditional format is optional.

Examples:
Value Field Display
2456.1426 [chp;frm='+0.00|-(0.00)|*|empty'] +2456.14
-156.333 [chp;frm='+0.00|-(0.00)|*|empty'] -(156.33)
0 [chp;frm='+0.00|-(0.00)|*|empty'] *
null [chp;frm='+0.00|-(0.00)|*|empty'] empty
-8.75 [chp;frm='+0.00|-(0.00)'] -(8.75)

locale To be used with the parameter frm.
Indicates that the format specified with frm must display locale day and month's names.
Locale informations can be set using the PHP function setlocale().

tplvars Enables you to define variables in the template that you can retrieve in the Php programm
using TplVars property. Works only with onload automatic fields.

Var fields:

A Var field is a TBS Field which displays a Php variable.
The name of it must be composed by the keyword 'var.' followed by the name of the Php variable.
The parameters for standard TBS Fields are available for Var fields.

For example [var.php_version] will be replaced by "4.2.3".

The user variables and the predefined variables can be merged but they must be global variables. Resource
variables are ignored.

It is possible to merge an Array variable by indicating the item with a dot.
For example: [var.myarray.item]

It is possible to merge an Object variable by indicating a property (or a method which doesn't need any
arguments) with a dot.
For example: [var.myobject.property]

When are Var fields merged?
Var fields are merged in the Show() method, this means just before displaying the merge result. But you can
force the merge at any time with the MergeSpecial() method.

Security: how to limit Var fields usage in templates?

You can limit the Var fields usage by defining an Allowed Variable Prefix when you create the TinyButStrong
object.

Example :
 $TBS = new clsTinyButStrong('','x1_');

In this example, only PHP global variables prefixed by 'x1_' are allowed in the template. Other Var fields will
produce an explicit error message when merging.
 [var.x1_title] will be merged if the global variable $x1_title exists.
 [var.x2_title] will produce an explicit error message.

NB: the first parameter '' de clsTinyButStrong() in the example above is used to define TBS tag delimiters. But
this is not described in this manual.

http://php.net/setlocale

Special Var fields:

A Special Var field is a TBS Field which displays data provided by the TinyButStrong system.
The name of a Special Var field has to begin with 'var..', followed by a keyword in the list below.
The parameters for standard TBS Fields are available for Special Var fields.

Example: Date of the day : [var..now;frm='mm-dd-yyyy']

Name Description

var..now Date and hour of the server.

var..version The version of TinyButStrong.

var..script_name The name of the PHP file currently executing.

var..template_name The name of the last loaded template file.
It is the name given to the LoadTemplate() method.

var..template_date The creation date of the last loaded template file.

var..template_path The directory of the last loaded template file.
It is the directory given to the LoadTemplate() method.

var..tplvars.* The value of an item set in the TplVars property.
('*' must be the key of an existing item in the array)

When are Special Var fields merged?
Special Var fields are merged with normal Var fields. That is in the Show() method, this means just before the
display of the merge result. But you can force the merge at any time with the MergeSpecial() method.

TBS Blocks:

A TBS block enables you to display data from a record source.
The merging between the block and the data is done using the MergeBlock() method.

During the merge, the TBS block is repeated as many times as there are records; and the associated TBS fields
are replaced by the value of the columns.
A TBS field associated to Block1 and displaying the value of the column ColumnA must be named Block1.ColumnA
Example: [Block1.ColumnA;frm='mm-dd-yyyy']

Two blocks with the same name will be regarded as two sections of the same block (see sections of blocks).

Block syntaxes:

There are three possible syntaxes to define a TBS block:

Explicit Syntax:
Two TBS tags are used. One for the beginning of the block and another for the end of the block.

Example:
HTML...[BlockName;block=begin;params]...HTML...[BlockName;block=end]...HTML

The TBS tags for the block definition will be deleted during the merging.

Relative Syntax:
The block is defined by a pair of opening-closing Html tags. Only one TBS tag is required.

Example:
HTML...<tag_name...>...[BlockName;block=tag_name;params]...</tag_name...>...HTML

The TBS tag for the block definition must be placed between the pair of Html tags.
This TBS tag will be deleted during the merging.

Simplified Syntax:
An associated TBS field is used to define the block in a relative way (see the relative syntax above).

Example:
HTML...<tag_name...>...[BlockName.ColumnName;block=tag_name;params]...</tag_name...>...HTML

The TBS tag for the block definition must be placed between the pair of Html tags.
But it is not necessarily the first TBS field in the block.

Element Description

BlockName The name of the TBS block.

block=begin Indicates the beginning of the block.

block=end Indicates the end of the block.

block=
tag_name

Indicates a block which is between the opening Html tag <tag_name...> and the closing Html tag
</tag_name...> that are surrounding the TBS tag. Both the opening and closing Html tags are
part of the block.
- row can be used as an alias in order to indicate the row of a table.
 block=row is the same as block=tr.
- opt can be used as an alias in order to indicate the item of an HTML list.
 block=opt is the same as block=option.

params Optional. One or several parameters from the list below. Separated with ';'.

Which syntax to use?

The 'absolute' syntax is rarely used with Visual Editors because TBS tags have often to be placed between two
Html tags. On the other hand, it is convenient for textual editors.

The 'relative' syntax enables you to indicate a block using only one TBS tag. Furthermore, there is no need to
hide the TBS tag because it will be deleted during the displaying. This syntax is quite practical.

The 'simplified' syntax is really simple. It enables you to define a TBS block and a TBS Field with only one TBS
tag. This syntax is the most current and the most practical.

Tip:
You can use the 'relative' or the 'absolute' syntax with custom tags using the Html standard.
Example:
<custom_tag>Hello [blk1.column1;block=custom_tag], how are you?</custom_tag>
Block's parameters:

Parameter Description

extend=n Can be used only with the relative syntax or the simplified syntax.
Extend the block definition upon the n next pairs of tags that follow.
This enables you, for example, to define a block on two rows of a table.
The value n must be an integer different from 0.
If n is negative, then the block is extended upon the previous pairs of tags.

encaps=num Indicates encapsulation level of the TBS tags compared to the HTML tags specified with
the parameter block. The default value is 1.

Example:

[block1.field1;block=tr;encaps=2] [block1.field2]

In the example above, the blue row will be duplicated during the merging because there is
'encaps=2'.
If 'encaps=1' is set or if the parameter is left off, then it will be the pink row that is
duplicated in the merging.

comm This parameter enables you to widen the bounds of the TBS tag up to the bounds of the
commentary tag (HTML) surrounding it.
<!-- [block1;block=tr;comm] this is an example--> is strictly identical to
[block1;block=tr]
This parameter is particularly useful for designing the template when using a visual HTML
editor (such as Dreamweaver or FrontPage).

nodata Indicates a section that is displayed only if there is no data to merge.

Example:

[block1.field1;block=tr] [block1.field2]

[block1;block=tr;nodata]There is no data.

For more information about sections, see the chapter 'Sections of blocks'.

headergrp=colname Indicates a block that is displayed each time the column colname gets a value different
from the previous one.
colname must be a valid column name returned by the data source.
You can define several headergrp sections with different columns.

For more information about sections, see the chapter 'Sections of blocks'.

serial Indicates that the block is a main block which contains serial secondary blocks.
For more information, see the chapter 'serial display (in columns)'.

p1=val1 Indicates the use of a dynamic query. All the occurrences of the string '%p1%' found in
the query given to the MergeBlock() method are replaced by the value val1.
For more information, see the chapter 'dynamic queries / sub-blocks'.

onsection=fct_name Indicates the name of a user PHP function that will be executed during the block merging.
The function is called each time a record is displayed. The function fct_name must have
the following syntax:
 function fct_name($BlockName,&$CurrRec,&$DetailSrc,$RecNum) { ... }

Parameter Description

$BlockName Returns the name of the block calling the function (read only).

$CurrRec Returns an associative PHP array containing the current record (read/write ;
don't forget the & in the function header).
If you set this variable to False, it ends the merging like it was the end of
the record set.

$DetailSrc Returns the source of the current section (read/write ; don't forget the & in the
function header).
If you set this variable to '', it cancels the displaying of this record.

$RecNum Returns the number of the current record (read only, first record is number
1).

when expr1=expr2 Use only with conditional blocks. Display the section of the block only if the condition is
verified.
Supported operators are:

= or == equal
!= not equal
+- greater than
+=- greater than or equal to
-+ less than
-=+ less than or equal to

Both expr1 and expr2 must be string or numerical expressions. The expressions may
contain Var fields.

default Use only with conditional blocks. Indicates a section of block that must be displayed only
if no section of the same block (name) has been displayed.

several Use only with conditional blocks. Indicates that several sections of the block can be
displayed if several conditions are true. By default, sections are exclusive.

Sections of block:

Different blocks having the same name will be regarded as sections of the same block.
Sections can be used to:
- alternate the display (normal sections),
- display something if there is no data (NoData section),
- display a header each time the value of a column changes (HeaderGrp section).

Normal sections:

When you define several normal sections, they will be used alternatively for each record.

Example:

[b1.caption;block=tr]

[b1.caption;block=tr]

In this example, the block named 'b1' contains two normal sections. Records will be displayed alternatively with a green background
and with a blue background.

NoData section:

Display the section if the data source has no records.
The NoData section is defined by adding the parameter nodata.

Example:

[b1.caption;block=tr]

There is nothing[b1;block=tr;nodata]

HeaderGrp section:

Display a header section every time a column's value in the record set changes.
A Header is defined by adding the parameter headergrp=column_name.

Example:

Year [b1.year;block=tr;headergrp=year]

[b1.caption] [b1.amount;block=tr]

Serial display (in columns):

The serial display enables you to display several records inside a block. For this, you have to use a main block
and secondary blocks.

Example:

Rec 1 Rec 2 Rec 3 Rec 4

Rec 5 Rec 6 Rec 7 Rec 8

Rec 9

In this example, main blocks are the blue lines of the table, the secondary blocks are the pink cells.

Syntax:
The main block and its secondary blocks are merged using only one call to the MergeBock() method. The main
block must be defined using the parameter serial. The secondary blocks must be nested into the main block. The
secondary block's names must be the name of the main block followed by "_" and a number indicating display
order.

Example:

[bx;block=tr;serial][bx_1.txt;block=td] [bx_2.txt;block=td] [bx_3.txt;block=td] [bx_4.txt;block=td]

The corresponding PHP is:
 $TBS->MergeBlock('bx',$cnx_id,'SELECT txt FROM t_info ORDER BY txt')

Empty secondary block:
You can specify a special secondary block that will be used to replace unused secondary blocks (without records).
This "Empty" secondary block must have the index 0. It can either be placed inside the main block with the
normal secondary block, or alone inside another serial block. The "empty" secondary block is optional.

Example:

[bx;block=tr;serial][bx_1.txt;block=td] [bx_2.txt;block=td] [bx_3.txt;block=td] [bx_4.txt;block=td]

[bx;block=tr;serial][bx_0;block=td]
No records found.

Remark:
The serial display also works with sections of block and dynamic queries.

Dynamic queries / sub-blocks:

Principles of the dynamic queries:

It is possible to use the MergeBlock() method with a dynamic query.
In your template, you have to define a block by adding the parameters p1, p2, p3,... with their values.
The query given to the MergeBlock() method has to contain marks such as %p1%, %p2%, %p3%, ... in order to
welcome the values of the parameters p1, p2, p3,... .

Each section of the block to be merged that contains a parameter p1 will be computed as a separate block for
which the dynamic query is re-executed. The sections of the block that have no parameter p1 are combined with
the previous section with a parameter p1.

Example:

[blk.town;block=tr;p1='france'] [blk.country]

[blk.town;block=tr;p1='us'] [blk.country]

Corresponding PHP code:
 $TBS->MergeBlock('blk',$cnx_id,"SELECT town,country FROM t_geo WHERE (country='%p1%')")

Result of the merge:

Paris france

Toulouse france

Washington us

Boston us

Use with sub-blocks:

Dynamic queries enable you to easily build a system of a main-block with sub-blocks. Here is how you can do it:
- Create a main block, and then a sub-block inside the main block.
- Link them by adding to the sub-block a parameter p1 whose value is a field from the main block.
- At the PHP side, merge the main block first, and then the sub-block.

Example:

Country: [main.country;block=table]
[sub.town;block=tr;p1=[main.cntr_id]]

Corresponding PHP code:
 $TBS->MergeBlock('main',$cnx_id,'SELECT country,cntr_id FROM t_country')
 $TBS->MergeBlock('sub',$cnx_id,'SELECT town FROM t_town WHERE (cntr_id=%p1%)')

Result of the merge:

Country: France
Paris

Toulouse

Country: Germany
Berlin

Munich

Country: Spain
Madrid

Barcelona

Remarks:
- The parameter htmlconv=esc enables you to pass protected string values to the query.
- The dynamic queries also work with sections of block and serial display.

Display a navigation bar:

TinyButStrong is able to display a navigation bar using the MergeNavigationBar() method.
It is quite similar to merging a block using MergeBlock() except that there are page numbers instead of data, and
you can use specific fields to display extra info, and options to arrange the navigation bar.

Blocks and fields:

Use a normal TBS block to display the page numbers.
This block will be merged with a virtual data source having as much records as pages to display, and with the
following columns:

Name Description

page Returns the number of a common page, reachable from the navigation bar.

curr Returns the number of the active page.

first Returns the number of the first page (1 by default).

prev Returns the number of the previous page.

next Returns the number of the next page.

last Returns the number of the last page if it's known, otherwise returns -1.

page is the only value that changes and its linked field must be placed inside the block. Others columns have
always the same value and can be placed inside the block as well as outside the block.
Those fields support the parameter endpoint. It will replace the value of the field with an empty string ('') when
the active page is equal to first page or last page. This enables you to manage display exceptions with parameter
magnet for example.

Example:
Beginning
In this example, the link will be deleted when the active page is the first page.

The block can contain a special section to display the active page differently.
This section is defined using parameter currpage on the block definition.

Example:

Template:

|< < [nav.page;block=td] [nav.page;block=td;currpage] > >|

Php code used:
 $TBS->MergeNavigationBar('nav',10,17) ;

Result of the merge:

|< < 11 12 13 14 15 16 17 18 19 20 > >|

Remark: this example doesn't display links.

Options

The block definition can contain parameters that are specific to the navigation bar.
Those options can also be defined as a parameter of the MergeNavigationBar() method.

Parameter Description
navsize=num Number of pages displayed in the navigation bar. (default = 10).
navpos=keyword Position of the navigation bar compared to the active page number. Use one of the following

keywords:
- 'step' (by default) to have the bar progressing by step.
- 'centred' to center the bar on the active page number.

navdel=blockname Name of a TBS block to delete when there is only one page or no page to display.
This TBS block must surroud the navigation bar. If there are several pages to display then
only TBS definition tags of this bloc are deleted.

pagemin=num Number of the first page (default = 1).

Automatic fields and blocks:

onload and onshow are reserved names for TBS fields and blocks that are automatically merged when the
template is loaded by the LoadTemplate() method and when the result is shown by the Show() method.

Automatic fields are merged with an empty value. They accept all TBS field's parameters.
They are useful for sub-template and template variables.

Example:
[onload;file=header.htm]

Automatic blocks are merged as conditional blocks. They accept only conditional block's parameters.
Examples:
[onload;block=tr;when [var.status]==1] Status 1

[onload;block=tr;when [var.status]==2] Status 2
See conditional blocks for more details.

Include a sub-template:

If a TBS field has the parameter file, then this field will be replaced by the contents of the indicated file during the
merging of this file. The value of the parameter file can be a string value or an expression made by Var fields
([var.*]) and keywords [val] (see definition of TBS fields).

TinyButStrong retrieves the contents of the file as is. If it's a Php script, then this script won't be executed.
To insert the result of a Php script, see 'Include the result of another PHP script'.
If the file to include is an Html file, then TinyButStrong will keep only the body (delimited by a pair of tags
<body> and </body>.
The parameter htmlconv (optional) enables you to precise if the contents of the file have to be converted to Html
or not. By default, it is not converted to Html.

Examples:
[var.page_header;file=[val]]
[var.page_footer;file=foot.htm;htmlconv=yes]

How to precise when the sub-template is included:

Use the automatic fields onload and onshow to precise when the field is merged.
- A field named onload is automatically merged when the LoadTemplate() method is called, just after the
template is loaded.
- A field named onshow is automatically merged when the Show() method is called.

Examples:
[onload;file=[var.article]]
[onshow;file=foot.htm]

Include the result of another PHP script:

If a TBS field has the parameter script, then the script will be executed at the field merging. The value of the
parameter script can be a string value or an expression made by Var fields ([var.*]) and keywords [val] (see
definition of TBS fields).

Examples:
[var.special_process;script=[val];getob]
[onshow;script=end.php;once]

Variable scope:

The script will be executed as if it was coded into a function. Therefore, global variables will not be
recognized in the script except if you declare them using the Php instruction global or if you use $GLOBALS.

Redirecting the display statements:

If your Php script contains display statements (such as echo), then the text will be displayed normally; that is
instantly and thus without waiting for the result of the template merging. To avoid this behaviour, you can use
the parameter getob which enables you to redirect the text to replace the TBS field.

With getob: texts passed to echo statements will be displayed at the place of the TBS fields.

Without getob: texts passed to echo statements will be displayed normally, that is instantly before the result of
the merge.

Prevent the script from being executed several times:

If the name of the script appears several times in your TBS fields, you can use the parameter once in order to
limit the script to one execution.

How to precise when the script is executed:

You can use automatic fields onload and onshow to precise when the script is executed. For more details on those
special fields, see 'Include a sub-template'.

Conditional display overview:

TinyButStrong offers several tools for conditional display of fields and blocks.

Conditional fields

For any TBS fields you can use parameters for conditional display, repeated below.
Parameter Description

. (dot) Display an Html unbreakable space if the field value is empty.

ifempty=value2 Display value2 if the field value is empty.

magnet=tag Delete a tag or a pair of tags if the field value is empty.

if condition
then value1
else value2

Display value1 or value2 depending on whether the condition is
verified or not.

frm=format1|format2|format3|format4 Changes the numeric format or date/time format depending on
whether the value is positive, negative, zero or empty.

Conditional blocks

http://php.net/language.variables.scope

Conditional blocks are defined like normal blocks except that:
- block definitions must have a parameter when or a parameter default,
- they cannot be merged with data,
- they cannot have linked fields.

You can merge a conditional block using the MergeBlock() method with keyword 'cond', or more usually using
automatic blocks onload and onshow (see more details below).

When you merge a conditional block, each when condition of its sections are evaluated until one is verified. As
soon as one when condition is verified, the section is kept and other sections are deleted. If no when condition is
verified, then the default section is displayed if it exists.
By default sections of a conditional block are exclusives, only one section of a block can be displayed.
Note: the condition definied by parameter when can use Var fields.

Example:

[block1;block=tr;when [var.light]=1] Light is set to 1.

[block1;block=tr;when [var.light]=0] Light is set to 0.

[block1;block=tr;default] Light is not 1 or 0.

This conditional block can be merged using the following code:
 $TBS->MergeBlock('block1','cond');

Using automatic blocks:
You can create conditional blocks named onload and onshow (or onload_ and onshow_ with a suffix). Those
blocks will be automatically merged when the template is loaded (onload) or when the result is shown (onshow).
Using suffix for block names enables you to have several blocks.

Example:

[onload_ligth;block=tr;when [var.light]=1] Light is set to 1.

[onload_ligth;block=tr;when [var.light]=0] Light is set to 0.

[onload_ligth;block=tr;default] Light is not 1 or 0.

This conditional block will be automatically merged when the template is loaded.

Non-exclusive sections:
If you want a block to have non-exclusive sections, you can use parameter several on the first section. With this
parameter, all conditions are evaluated and each true condition makes its section to be displayed.

Example:

[onload_err;block=tr;when [var.email]='';several] Your email is empty.

[onload_err;block=tr;when [var.name]=0] Your name is empty.

[onload_err;block=tr;default] All is ok.

Summary:

TBS Field's parameters:

Parameter Summary

htmlconv Html conversion Mode for the field's value.

. (dot) If the value is empty, then display an unbreakable space.

ifempty If the value is empty, then display another value.

magnet If the value is empty, then delete surrounding tags.

mtype Use with magnet.

if If the condition is verified, then change the value.

then Use with if.

else Use with if.

onformat Executes a Php user function to modify the field merging.

max Limits the number of characters.

frm Apply a date-time or a numeric format.

locale Use with frm. Display locale day and month's names.

protect Protection mode for characters '['.

selected Selects items in an Html list.

selbounds Use with selected. Change the default bounds for searching items.

comm Extends the field's bounds up to the Commentary tag that surround it.

noerr Avoid some TBS error messages.

file Includes the contents of the file.

script Executes the Php script.

getob Use with script. Retrieves texts passed to echo and puts them to the field's place.

once Use with script. Prevent the script from several executions.

TBS Block's parameters:

Parameter Summary

block Defines the block's bounds.

extend Extends the block's bounds upon several successive Html tags.

encaps Extends the block's bounds upon several encapsulated Html tags.

comm Extends the block's bounds up to the Commentary tag that surround it.

nodata Indicates the section that is displayed when there is no data in the data source.

headergrp Indicates a section that is displayed only when the value of a column changes.

serial Indicates a section that contains a series of several records.

p1 Sends a parameter to the dynamic query for the data source.

onsection Executes a Php user function to modify the section merging.

tplvars Use with onload fields only. Define template variables.

when Use with onload or onshow. Displays the section when the condition is verified.

default Use with onload or onshow. Displays the section when no section is displayed.

several Use with when. Indicate that several blocks of the group can be displayed.

Fields and parameters for Navigation bar:

Fields Summary

nav.page Displays the number of a page.

nav.curr Displays the number of the current page.

nav.first Displays the number of the first page (allways 1).

nav.prev Displays the number of the previous page.

nav.next Displays the number of the next page.

nav.last Displays the number of the last page (-1 if unknown).

Parameter Summary

currpage Indicates a section that is displayed only for the current page.

endpoint Returns an empty string if the current page is the first page or the last page.

navpos Indicates how the navigation bar is positioned compared to the current page number.

navsize Indicates the number of page to display.

pagemin Indicates the number of the first page.

Names of Special Fields and Blocks:

Name Summary

val The keyword [val] can be used in field's parameters to represent the field's value.

var.* Displays a Php variable.

var..* Displays information about the TinyButStrong System.

Virtual column name for a block. It displays the record's number.

$ Virtual column name for a block. It displays the record's key if the data source is a Php
Array.

onload Automatic field or block, merged when the template is loaded.

onshow Automatic field or block, merged when the template is shown.

.:*~*:._.:*~*:._.:*~*:._.:*~*:._.:*~*:._.:*~*:._.:*~*:._.:*~*:._.:

	Table of Contents
	Introduction
	Basic principles
	Installation
	Explanations and technical details

	Mini examples

	PHP side
	method
	LoadTemplate()
	Argument
	File
	HtmlCharSet

	No Html conversion
	User function
	Adding the file at the end of the current template

	MergeBlock()
	Argument
	BlockName
	Source
	Text
	Number
	Clear
	Conditional
	PHP Array
	MySQL
	PostgreSQL
	SQLite
	custom

	Query
	PageSize
	PageNum
	RecCount

	Link between the block and the records
	Merging several blocks with the same data
	Counting the records
	Resource and Request arguments according to the data source type
	Text
	Number
	Clear
	Conditional
	Array
	String syntax
	Displaying the key of current record
	Structure of supported arrays

	By Page mode

	Show()
	CacheAction()
	Argument
	CacheId
	ActTimeOut
	Dir

	Constant
	TBS_DELETE
	TBS_CANCEL
	TBS_CACHENOW
	TBS_CACHEONSHOW
	TBS_CACHELOAD

	GetBlockSource()
	Argument
	BlockName
	Sections

	MergeField()
	Argument
	FieldName
	...
	FunctionMode

	MergeNavigationBar()
	Argument
	NavName
	Options
	Key
	'navsize'
	'navpos'
	'navdel'
	'pagemin'

	PageNum
	RecCount
	PageSize

	MergeSpecial()
	Value
	'var'
	'onload'
	'onshow'

	property
	Render
	Constant
	TBS_NOTHING
	TBS_OUTPUT
	TBS_EXIT

	Source
	TplVars

	Adding a data source type
	TBS identifier
	Statements of the functions
	tbsdb_customdb_open
	Argument
	$Source
	$Query

	tbsdb_customdb_fetch
	Argument
	$Rs
	$RecNum

	tbsdb_customdb_close
	Argument
	$Rs

	HTML side
	TBS Fields
	Element
	FieldName
	params
	htmlconv=val
	value
	yes
	nobr
	wsp
	no
	look
	esc

	. (dot)
	ifempty=val
	magnet=tag
	mtype=val
	Value
	m*m
	m+m
	m*
	*m

	selected
	selbounds=tag

	comm
	noerr
	file=filename
	script=filename
	getob
	once

	if expr1=expr2
	operators
	= or ==
	!=
	+-
	+=-
	-+
	-=+

	then val1
	else val2

	onformat=fct_name
	Parameter
	$FieldName
	$CurrVal

	protect=val
	max=val
	frm=format
	format
	Date-time format
	d, dd, ddd, dddd
	xx
	m, mm, mmm, mmmm
	yy, yyyy
	hh, nn, ss

	Numeric format
	Conditional formats

	locale

	tplvars

	Var fields
	When are Var fields merged?
	Security: how to limit Var fields usage in templates?

	Special Var fields
	Name
	var..now
	var..version
	var..script_name
	var..template_name
	var..template_date
	var..template_path
	var..tplvars.*

	When are Special Var fields merged?

	TBS Blocks
	Block syntaxes
	Explicit Syntax
	Relative Syntax
	Simplified Syntax

	Which syntax to use?
	Tip

	Element
	BlockName
	block=begin
	block=end
	block=tag_name
	Parameter
	extend=n
	encaps=num
	comm
	nodata
	headergrp=colname
	serial
	p1=val1
	onsection=fct_name
	Parameter
	$BlockName
	$CurrRec
	$DetailSrc
	$RecNum

	when expr1=expr2
	operators
	= or ==
	!=
	+-
	+=-
	-+
	-=+

	default
	several

	Sections of block
	Normal sections
	NoData section
	HeaderGrp section

	Serial display (in columns)
	Syntax
	Empty secondary block

	Dynamic queries / sub-blocks
	Principles of the dynamic queries
	Use with sub-blocks

	Display a navigation bar
	Name
	page
	curr
	first
	prev
	next
	last

	Options
	Parameter
	navsize=num
	navpos=keyword
	navdel=blockname
	pagemin=num

	Automatic fields and blocks
	Include a sub-template
	How to precise when the sub-template is included

	Include the result of another PHP script
	Variable scope
	Redirecting the display statements
	Prevent the script from being executed several times
	How to precise when the script is executed

	Conditional display overview
	Conditional fields
	Parameter
	. (dot)
	ifempty=value2
	magnet=tag
	if condition
	then value1
	else value2

	frm=format

	Conditional blocks
	Using automatic blocks
	Non-exclusive sections

	Summary
	TBS Field's parameters
	TBS Block's parameters
	Fields and parameters for Navigation bar
	Names of Special Fields and Blocks

	PFNJBFJPHHGAJNOMPLGNBLFEHHKBBOEF:
	form1:
	x:
	f1: [1]
	f2: [2]

	form2:
	x:
	f1: 2

